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Abstract 

 PLGA (polylactic-co-glycolic acid) nanoparticles containing the hydrophobic antifungal 

Itraconazole (ITZ) were developed to address the need for more efficient means of treating 

fungal infections.  PLGA-ITZ nanoparticles were synthesized using an oil-in-water emulsion 

evaporation method.  The nanoparticles morphology (TEM), size and size distribution, zeta 

potential (DLS), encapsulation efficiency (UV-VIS), release profile, and antifungal activity were 

characterized.  The blank NPs and loaded PLGA-ITZ NPs were spherical with diameters of 

201±5 nm, 232±1 nm and 223±36 nm at 0%, 12.5% and 25% loadings, respectively.  All 

synthesized particles measured a negative zeta potential ranging from -28 to -33 mV.  The 

maximum encapsulation efficiency of ITZ was ~96% at 12.5% w/w theoretical loading.  ITZ 

release showed an initial burst followed by a gradual release profile, with 75% ITZ released over 

5 days.  PLGA-ITZ nanoparticles inhibited Aspergillus flavus fungal growth more efficiently 

than free and emulsified ITZ.  Quantitative fluorescence experiments performed with a GFP-

expressing A. flavus verified that the PLGA-ITZ NPs had superior inhibitory activity at lower 

ITZ concentrations compared to free and emulsified ITZ drug formulations.  PLGA-ITZ 

nanoparticles (232 nm) completely inhibited Aspergillus flavus growth over 11 days at 0.3 mg/ml 

ITZ, a concentration 100x less than free and emulsified ITZ.  In nanoparticle uptake studies, 203 

nm fluorescent PLGA nanoparticles containing coumarin-6 were seen associating with fungal 

cell surfaces and internalizing efficiently, while 1206 nm particle uptake was sporadic.  

Quantitative fluorescence experiments of PLGA-ITZ NPs of 232 nm, 630 nm, and 1060 nm 

showed inhibitory differences at the lowest ITZ concentration of 0.003 mg/ml, and no 

differences at higher concentrations.  The PLGA-ITZ nanoparticle system is envisioned to 

increase bioavailability of ITZ by improving its aqueous solubility, controlling its release over 
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time and especially increasing antifungal penetration at the cellular level by efficient 

nanoparticle uptake by cells, thereby elevating antifungal efficacy. 
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Chapter 1. Introduction 

The frequency of acquiring bacterial, viral, or fungal infectious diseases increases each year 

due to the ease of transmission from person to person [1].  Swift and effective treatment options are 

a necessity to avoid spreading of disease to peripheral organs and potential death [2-3].   

Of the many forms of infection, fungal infections can be easily acquired and are known to 

persist over time, causing great discomfort.  Approximately 1.5 million fungal species exist on earth 

and according to some this number is increasing [4].  Because a large number of species exist 

coming in contact with fungal species can occur from a range of locations, especially moist areas.  

Some common species known to result in infection are Aspergillus, Candida, Tinea, Pneumocystis, 

Cryptococcus, and Histoplasma [5].  Superficial infections, a subset of fungal infections, caused by 

such species include conditions such as athlete’s foot, finger and toe nail infections, yeast 

infections, oral thrush, and ringworm.  There are also systemic and opportunistic fungal infections 

which can enter the bloodstream and result in more serious disease, particularly in those with 

compromised immune systems [6-8].  Aspergillus species are among the more life threatening 

species that result in opportunistic mycoses and will be focused on in the present study [9-11].  

Aspergillosis is one such disease of the lungs, where an aspergilloma, or fungal ball, forms in the 

preexisting cavity in the lung parenchyma [12-15].  Treating patients with underlying diseases tends 

to be difficult due to the lack of efficient pharmaceutical drugs.  Treatment of most fungal 

infections/diseases occurs via oral formulation or intravenous injection; however, due to a wide bio-

distribution of drugs to various tissues, the amount actually reaching the target site is limited.  The 

body deals with ingested drugs by absorption, distribution, metabolization, and excretion [16-17].  

Through these processes, much of the drug can be degraded, renally excreted, or transformed in the 

liver to an inactive metabolite, reducing the amount of active agent circulating through the 
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bloodstream.  Hence, high drug dosing is sometimes required for proper treatment translating into 

potential toxicity, and increased treatment costs.  For example, Itraconazole, a broad spectrum 

triazole is normally prescribed as an oral formulation at dosages of 200 mg per day and 400 mg per 

day for serious infections, which can lead to potential toxicity [18].  A prescription of 180 generic 

capsules at 100 mg per dose can potentially cost patients $360 [19].  More efficient means of 

delivery are needed in order to combat fungal diseases and reduce treatment costs.    

One solution increasingly investigated in the past decade is the use of nanoparticulate drug 

delivery systems of various types, including polymeric nanoparticles.  These nano sized vesicles 

have shown to be effective vectors for drug delivery by being able to provide protection to active 

agents from premature degradation, increased retention times, increased bioavailability, controlled 

drug release, and penetration into certain pathologies [20-22].  Polymeric nanoparticles applications 

are wide spread in areas of gene therapy, protein delivery, and targeted cancer therapies due to their 

bio-friendly and tunable properties [23-25].  The characteristics that define the particle’s behavior 

are dictated by the polymer type, size, and surface charge [26].  Smaller sized particles have shown 

great benefit by facilitating drug penetration into tissue through various sized fenestrations, while 

avoiding defense mechanisms [27-29].  However, if particles are large (~1µm) and surfaces contain 

strong polycationic or hydrophobic properties, opsonins and macrophages can be attracted, reducing 

retention times.  The polymer type can play a large role in how the delivery system will react in 

various environments.  A variety of polymers may be employed to synthesize nanoparticles 

intended for particular applications.  Chitosan, for example, is a naturally occurring linear 

polysaccharide derived by the deacetylation of chitin.  Its use comes predominantly in gene therapy 

as a non-viral vector due to its strong polycationic properties and complexation ability with DNA 

[30-32].  As an alternative to natural polymers, synthetic polymers have increasingly gained interest 
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in drug delivery due to their biocompatible nature and controllable release characteristics.  

Polylactides (PLA), polyglycolides (PGA), polyanhidrides, and poly (lactide-co-glydolides) 

(PLGA), to name a few, are some commonly used polymers in drug delivery.  PLGA, in particular, 

is an FDA approved co-polymer that has been used widely in drug delivery due to its controllable 

release characteristics (Figure 1.1) [33].  This can be achieved by varying the molar ratio of its 

monomers lactic and glycolic acid, altering its degradation rate.  PLGA degradation occurs 

primarily through hydrolysis of the ester linkages, producing by-products of lactic acid and glycolic 

acid which are normally removed from the body.  PLGA is particularly of use for entrapping 

hydrophobic compounds (i.e. Itraconazole), that otherwise have poor systemic bioavailability due to 

premature degradation, clearance, and specific solubility requirements [34-35].  Entrapment of 

hydrophobic drugs into polymeric nanoparticles improves drug dispersibility and allows adequate 

time for active agents to reach target/infected sites [36].  Synthesis of PLGA nanoparticles can be 

conducted by an emulsion-solvent evaporation 

technique in the presence of a surfactant (i.e. 

polyvinyl alcohol), providing stability and 

preventing aggregation (Figure 1.2) [37].  

The present study attempts to entrap Itraconazole in PLGA nanoparticles formed with PVA 

and improve the functionality of the antifungal compared to commercially available Itraconazole.   

The thesis is organized in 3 main chapters.  Following Chapter 1- Introduction, Chapter 2 focuses 

on nanoparticle synthesis, characterization (size, zeta potential, morphology, encapsulation 

efficiency, release profile), and in-vitro qualitative and quantitative antifungal studies of PLGA 

nanoparticles with entrapped Itraconazole (PLGA-ITZ) against Aspergillus flavus.  Chapter 3 will 

then present information on the effect of nanoparticle size on fungal uptake and antifungal activity.   

Figure 1.1:  PLGA structure  



www.manaraa.com

4 

 

 

 

 

 

 

 

 

Figure 1.2:  Schematic representing nanoparticle components, including the polymer (PLGA), 

surfactant (PVA), and drug (Itraconazole). 
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Chapter 2. In-vitro Antifungal Studies of Itraconazole Loaded PLGA 
Nanoparticles Against Aspergillus flavus 

2.1  Introduction 

The percentage of immune-compromised individuals vulnerable to fungal infections is 

constantly increasing due to the increase in HIV/AIDS, transplant surgeries, cancer, and various 

underlying diseases [1].  The high frequency of infections associated with increased cost, has placed 

a need for highly efficacious, less toxic drugs for treatment of fungal infections.  Itraconazole (ITZ) 

is a broad spectrum triazole antifungal that is used in treating and preventing fungal infections, such 

as those commonly caused by Candida albicans and Aspergillus species.  Amphotericin B is 

another common drug shown to be effective in treating endemic mycoses; although it is known to 

cause severe side effects such as nephrotoxicity [2-3].  Other azole antifungals, such as fluconazole, 

voriconazole, and ketoconazole, may be used; however ITZ shows better efficacy and less 

resistance by various fungal species [4].   

The main drawback associated with ITZ is its low oral absorption.  ITZ is a highly 

hydrophobic weak base with a low aqueous solubility of approximately 1 ng/ml at pH 7 [5].  An 

acidic medium, such as the gastric environment of the stomach, favors its solubilization (4 µg/ml at 

pH 1), which increases ITZ absorption [5].  It is recommended that ITZ be ingested with food to 

stimulate gastric secretion, which can increase ITZ bioavailability [6].  This can be troublesome for 

individuals that have underlying sicknesses as food intake may be limited due to nausea and 

vomiting, and GI tract complications that can hinder absorption, as is the case of those undergoing 

chemotherapy.  An intravenous formulation is available that solubilizes Itraconazole by complexing 

with hydroxypropyl-β-cyclodextrin (HP-β-CD).  However, the accumulation of HP-β-CD can 

potentially lead to toxicity limiting the frequency of intravenous doses [7].  This is most notably a 

concern for patients with renal complications, since the reduced clearance rate of HP-β-CD can 
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reach toxic levels [8-9].  To address these limitations, there is a need for more efficient and effective 

means of delivery that maximizes ITZ bioavailability and increases its dispersibility at 

physiological pH. 

Recently, many advances in nano drug delivery systems have been made to improve the 

efficacy of various drugs.  Due to their small size, these nanosized structures are able to cross 

biological barriers, improving drug bioavailability in areas of interest [10].  Polymeric nanoparticles 

(NPs) composed of PLGA (polylactic-co-glycolic acid), have been used as a means of drug delivery 

due to their biodegradable and biocompatible nature, and controllable release characteristics [10-

11].  Entrapping bioactive components such as ITZ into these particles protects the drug from 

premature degradation, increases drug dispersibility, and releases the contents gradually to reach 

therapeutic levels [12]. The combined effect of these factors can lead to increased bioavailability 

and effectiveness.  PLGA has also been actively utilized as a vector for transporting 

chemotherapeutic and antibacterial drugs, attaining sustained and targeted drug concentrations at 

infected areas.  Studies have shown cellular uptake of PLGA nanoparticles against various cancer 

cell lines, improving drug efficacy and minimizing deposition in peripheral tissue [13-17].  Esmaeili 

et al (2007) loaded PLGA NPs with the antibacterial rifampicin and showed four times greater 

antibacterial activity compared to free rifampicin; they surmised this could possibly be from 

enhanced penetration of bacterial cells [18].  Cellular uptake in fungal spores has not been 

completely elucidated, however, but studies have shown increased efficacy against fungal species 

when PLGA was used as a delivery vector.  For example, Amphotericin B was entrapped into 

PLGA nanoparticles and showed improved oral bioavailability and minimized toxicity compared to 

a commercially available form [19].  Similarly, Peng et al (2008) showed the effects of voriconazole 

entrapped PLGA NPs against free voriconazole using tubes containing yeast cells in Sabouraud’s 
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dextrose broth [20].   Voriconazole NPs showed a more potent antifungal effect compared to free 

voriconazole.  In each case, the underlying theme was the improved dispersibility, resulting in 

increased bioavailability and sustained drug concentrations compared to free drug formulations.  

These characteristics make PLGA an attractive polymer for drug delivery, as toxicity due to high 

drug dosing and the associated cost are problems that must be addressed [21-22].   

The purpose of this study was to develop a nanocarrier drug delivery system for 

encapsulation of the hydrophobic drug ITZ into PLGA and to test the antifungal capability of the 

NPs with entrapped ITZ (PLGA-ITZ NPs) in-vitro.  The ability of the ITZ entrapped nanoparticles 

to gradually release the drug and inhibit fungal growth over time was compared against two other 

treatments of ITZ in water (Water-ITZ), and an emulsion of ITZ in 0.03% Triton X-100 (Tx-ITZ) 

over eleven days.  Growth inhibition of Aspergillus on culture plates and on microscope slides was 

observed to show the increased effect by PLGA-ITZ NPs, followed by a study on GFP- expressing 

Aspergillus flavus to quantify fungal inhibition using a fluorescent plate reader.  Spores were treated 

at the time of seeding, and 12 hours later to show antifungal efficacy at different growth periods. 

Aspergillus species are among the more life threatening fungal infections with a 40% mortality rate, 

and thus was selected as a model fungus in this study [23-24].  The in-vitro results reported herein 

not only highlight visually the improved antifungal activity of entrapped ITZ, but also provide 

quantitative evidence of improved antifungal activity of the entrapped drug, adding to the available 

literature on antifungal nanoparticle delivery, predominantly conducted in-vivo.   

2.2  Materials and Methods 

2.2.1  Materials 

Itraconazole, PLGA (50/50) 5-15 kDa, acetonitrile, dichloromethane, polyvinyl alcohol (31-

50 kDa), and Triton X-100 were purchased from Sigma Chemical Co. (St. Louis, MO).  Potato 



www.manaraa.com

11 

 

dextrose agar was made from potatoes according to the Bacteriological Analytical Manual [25].  

Aspergillus flavus 1298 and Aspergillus flavus70s GFP [26], were acquired from ARS USDA 

Southern Regional Research Center (New Orleans, LA).  Corning Costar black clear bottom 96 well 

plates were acquired from Fisher Scientific (Pittsburgh, PA). 

2.2.2  Polylactic-co-glycolic acid-Itraconazole Nanoparticle Synthesis  

 The unloaded PLGA nanoparticles and the ITZ loaded nanoparticles were synthesized by an 

emulsion-solvent evaporation method, purified by dialysis, and freeze-dried for further analysis. 

PLGA-ITZ nanoparticle synthesis was carried out by emulsion evaporation as follows.  A 1% (w/v) 

PLGA solution was formed by dissolving 50:50 PLGA in Dichloromethane (DCM).  ITZ (6.4 mg) 

was dissolved into 5 ml of 1% (w/v) PLGA in DCM to form an organic phase at 1:8 w/w 

Itraconazole:PLGA ratio.  The organic phase was added to 50 ml of 0.3% (w/v) polyvinyl alcohol 

aqueous solution under mixing using an Ultra Turrax t-18 basic (IKA Works, Wilmington, NC).  

Sonication was then performed for 10 minutes with pulses of 2 seconds on and 2 seconds off, in 

order to form a (O/W) micro-emulsion using a Vibra Cell vc 750 (Sonics, Newton, CT).  The DCM 

was then removed from the mixture by evaporation with a Rotovapor R-124 (Buchi, Switzerland).  

The evaporation of the organic solvent allowed for the formation of the nanoparticles and the 

encapsulation of ITZ within the polymeric matrix.  Empty PLGA nanoparticles were synthesized 

following the same procedure, with the exception that no ITZ was added to the organic phase. 

 A dialysis step was applied immediately following synthesis to remove excess surfactant 

and associated ITZ from the solution.  Any ITZ not removed by this method, whether entrapped or 

marginally associated with the surface of the particle, was considered entrapped.  A Specrta/Por CE 

cellulose ester membrane (Spectrum, Rancho Dominquez, CA) with a molecular weight cut-off of 

100 kDa was used.  The nanoparticles underwent dialysis in a 2.5 L tank with nano-pure water, at a 
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ratio of 100:1 nano-pure water to NP, for eight hours, changing the water after four hours to 

facilitate the dialysis process.  

Following purification, a freeze-drying step was applied to remove the water from the 

nanoparticle suspension.  The nanoparticle suspension was freeze-dried at -80oC at a reduced 

pressure of 0.13 Pa for a period of 48 hours using a Freezone 4.5 (Labconco, Kansas City, MO).  

After freeze drying, the nanoparticles were stored at -8°C prior to further analysis. 

2.2.3  Nanoparticle Characterization 

The morphology of the nanoparticles was studied by Transmission Electron Microscopy 

(TEM) using a JEOL 100-CX (JEOL USA Inc., Peabody, MA) system. One droplet of the 

nanoparticle suspension was placed on a polymer coated copper grid of 400 mesh with a carbon 

film, and the excess sample was removed with filter paper.  Uranyl acetate 2% was used as a stain; 

the excess was removed after 1 min and the sample was dried before analysis by TEM.   

Nanoparticles were tested for size, size distribution, and zeta potential by dynamic light 

scattering (DLS) using the Malvern Zetasizer Nano ZS (Malvern Instruments Inc., Southborough, 

MA).  In all cases, a volume of 1.3 ml of each sample at a concentration of 0.3 mg/ml was placed in 

a polystyrene cuvette and measured at 25ºC at pH 6.5.  The mean values of size and PDI were 

determined using a mono-modal distribution. 

 2.2.4  Encapsulation Efficiency 

Encapsulation efficiency (EE) of ITZ was calculated by resuspending 3 mg of the freeze-

dried nanoparticles in 1 ml of 95:5 (v/v) acetonitrile:water solution.  Disruption of particles was 

assisted by 20 seconds sonication, and then the suspension centrifuged for 30 min at 30,000 rpm to 

remove the disrupted polymer.  ITZ absorbance in the supernatant was measured at 300 nm with a 
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Genesys 6 spectrophotometer (ThermoSpectronic Rochester, NY), and the concentration 

determined using a standard curve of Itraconazole in 95:5 (v/v) acetonitrile:water solution. The 

efficiency was reported as the ratio of the amount of ITZ entrapped in the recovered nanoparticles 

to the theoretically added. 

2.2.5  Itraconazole Drug Release 

 The drug release profile was determined by resuspending the nanoparticles at 3mg/ml in 

PBS at pH 7.  One ml aliquots of the suspension were pippetted into ten, 1.7 ml centrifuge tubes. 

The tubes, placed in an incubator shaker at 37ºC and 150 rpm, were removed at 0, 8, 24, 32, 48, 56, 

72, 80, 96, 104 hours. Tubes were centrifuged at 30,000 rpm for 1 hour, the supernatant decanted 

and NPs recovered.  NP pellets were disrupted by adding 95:5 acetonitrile in water and 20 seconds 

of sonication.  Samples were centrifuged for 30 min at 30,000 rpm to remove the disrupted polymer, 

and ITZ in the supernatant was quantified via UV spectrophotometry at 300 nm, as done in the 

encapsulation efficiency method (see above). 

2.2.6  Fungal Growth Inhibition Studies 

The antifungal ability of the nanoparticles with entrapped ITZ was tested on fungal growth 

in three ways: growth inhibition on a lawn of conidia in a Petri plate; growth inhibition of mycelia 

growing into a treated area on a microscope slide; fluorescence inhibition of a GFP-expressing A. 

flavus in a 96-well plate assay.  PLGA-ITZ NPs were compared against two drug formulations 

consisting of ITZ in water (Water-ITZ) and an emulsion of ITZ in 0.03% Tx-100 (Tx-ITZ).    

2.2.6.1  A. flavus Petri Plate Culture 

Potato dextrose agar plates were inoculated by spreading 10 µl of conidial suspension at 

1x105 spores/ml of Aspergillus flavus over the plate. Three different treatments (10 µl) were 
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pippetted onto the plates:  Water-ITZ at 0.3 mg/ml, Tx-ITZ emulsion at 0.3 mg/ml, and PLGA-ITZ 

NP suspensions at 10 and 1mg/ml (equivalent to 0.3, 0.03 mg/ml of ITZ respectively).  The plates 

were incubated at 37ºC.  Digital photos of the cultures were taken after treatments were initiated 

and on the third through the fifth day to assess the antifungal activity.   

2.2.6.2  Microscope Slide Culture  

 Further qualitative evidence of the PLGA-ITZ NPs inhibiting A. flavus was acquired by 

observing the effects of the treatments on a line of fungus growing into treated areas. A mercerized 

cotton covered polyester thread (~4 inches) was dipped into  ~1ml of 1% protamine sulfate in an 

Eppendorf tube, removed and allowed to air dry.  The thread was then immersed in a conidial 

suspension (1x105 spores/ml) of A.flavus in an Eppendorf tube, removed and stretched across the 

center of a rectangular piece of potato dextrose agar on a 1.5x3 inch microscope slide.  The ends of 

the thread were secured to the slide by tape. Treatments (2 µl) of Water-ITZ at 30, 3, and 0.3 

mg/ml, Tx-ITZ emulsion at 30, 3, and 0.3 mg/ml, PLGA-blank NPs at 10 mg/ml and PLGA-ITZ 

NPs at 10 and 1mg/ml (equivalent to 0.3, 0.03 mg of ITZ respectively), were spotted 10 mm above 

the thread and the extent of inhibition beyond the point of application was observed over 5 days at 

37ºC.  

2.2.6.3  GFP-Expressing  A. flavus Fluorescence Quantification 

 Quantification of growth inhibition was done by using a GFP expressing Aspergillus flavus, 

on the basis that biomass was directly proportional to fluorescence.  Black clear bottom 96 well 

plates were inoculated with 50µl of a conidial suspension (5x105 spores/ml) containing 200 µl of 

1.25x glucose salts medium [27].  Different concentrations of ITZ in water (30, 3, 0.3, 0.03 mg/ml), 

Tx-ITZ emulsion (at 30, 3, 0.3, 0.03 mg/ml ITZ), blank NPs at 10 mg/ml and PLGA-ITZ NPs at 10, 

1, 0.1 mg/ml (equivalent to 0.3, 0.03, 0.003 mg/ml ITZ respectively) were tested.  The four 
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treatments (10 µl) were added immediately following inoculation (0 h) and 12 hours after 

inoculation (12 h) to the respective wells to assess the ability of the particles to inhibit growth.  

Fluorescent measurements were taken once a day for eleven days using a Synergy HT Multi-Mode 

Microplate Reader (BioTek, Winooski, VT), at excitation and emission wavelengths of 485 nm and 

528 nm, respectively.  Fluorescence drop off in latter parts of study were indicative of accumulation 

of waste-by product.  Fluorescence values are the mean of 3 replications. 

 The natural log of fluorescence was analyzed using the MIXED procedure of SAS (SAS 

system, SAS Institute Inc., Cary, NC).  The two treatment testings (0 h and 12 h) were analyzed 

separately.  The two initial models included the fixed effects of treatment, concentration, time and 

their two- and three-way interactions. Time was analyzed as repeated measures using the covariance 

structure that best fitted the data based on the Akaike Information Criterion.  The treatment by 

concentration by day interaction was significant (P< 0.0001) for both treatment testing (0h and 12 

h); therefore treatments were compared over time separately at the various ITZ concentrations.  For 

the 0 h treatment testing, day 0 was not included into the analysis because fluorescence was ≤ 1 for 

all treatments.  The statistical analysis focused on days 1 to 5 for the 0 h testing (Appendix A-

Tables S1 to S3) and the first 5 days for 12 h treatment testing (Appendix A-Tables S4 to S6), 

where most growth and antifungal activity occurred.  Within each ITZ concentration the model 

included the fixed effects of treatment, time and their interaction.  Time was analyzed as repeated 

measures using the covariance structure that best fitted the data based on the Akaike Information 

Criterion.  When the treatment by day interaction was significant, comparisons between means were 

performed using the Tukey post-hoc multiple test adjustment.  Statistical significance was declared 

at P ≤ 0.05. 
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2.3   Results  

2.3.1  Nanoparticle (NP) Characterization: Size, Zeta Potential, Morphology, Encapsulation 

Efficiency, Release 

 Table 1 summarizes the size, PDI, zeta potential, and encapsulation efficiency (EE) for 

PLGA-blank NPs and loaded PLGA-ITZ NPs.  Size measured via DLS reported blank PLGA 

nanoparticles of 201±5 nm and loaded PLGA-ITZ NPs at 12.5% and 25% loadings at 232±1 and 

223±36 nm, respectively (Table 2.1).  The PDI ranged from 0.01 to 0.213 and the zeta potential was 

negative for all particle types ranging from -28 to -33 mV.  This negative charge helped in 

stabilizing the particles by charge repulsion.  

Table 2.1:  Summary of polylactic-co-glycolic acid-Itraconazole nanoparticle (PLGA-ITZ NP) 

characteristics: Size, PDI, zeta potential and encapsulation efficiency 

NP Type Theor. Loading 

(%w/w) 

Size (nm) PDI  Zeta (mV) EE (%) 

Empty PLGA 0 201 ± 5 0.010±0.031 -33 ± 8 N/A 

PLGA-ITZ  12.5 232 ± 1 0.213±0.035 -31 ± 5 96 ±7 

PLGA-ITZ  25.0 223 ± 36 0.175±0.112 -28 ± 6 46 ± 2 

 
TEM pictures confirmed that particles were spherical in morphology with no visible aggregation 

(Figure 2.1).  Size measured via DLS reported the hydrodynamic diameter, while that seen in the 

TEM photographs was the physical diameter of the dried particles (slightly smaller), hence the 

discrepancy between the two measurements.  An encapsulation efficiency of approximately 96% 

was obtained at a theoretical loading of 12.5%.  Increasing the theoretical loading to 25% decreased 

the efficiency to 46% for the given amount of polymer.  For this reason, 12.5% PLGA-ITZ NPs 

were used in the subsequent studies.    
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Figure 2.1: TEM pictures of (a) Blank polylactic-co-glycolic acid-Itraconazole nanoparticles 

and (b) loaded polylactic-co-glycolic acid-Itraconazole nanoparticles. 

Itraconazole (ITZ) release from PLGA nanoparticles suspended in PBS at pH 7 was biphasic, with 

an initial jump of 20%, followed by a steady release over five days with 75% being released by the 

fifth day (Figure 2.2). 

 

Figure 2.2:  Release of ITZ from 12.5% (w/w ITZ:PLGA ratio) polylactic-co-glycolic acid-

Itraconazole nanoparticles suspended in PBS pH 7 at 37ºC over 5 days (n=3).  Release based 

on 85% encapsulation efficiency. 
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2.3.2  A. flavus Growth Inhibition in Petri Plate Culture and Microscope Slide  

 Three treatments (Water-ITZ, Tx-ITZ emulsion, and PLGA-ITZ NPs) were tested on 

Aspergillus flavus (Figure 2.3); circled areas on culture plates indicate treatment placement.  

 The Water-ITZ and Tx-ITZ emulsion showed similar fungal inhibitory ability with Tx-ITZ 

having a slightly better effect (Figure 2.3a, 2.3b).  Tx-ITZ showed moderate clearing near the 

applied drug at day three but as time progressed growth encroached the point of application (Figure 

2.3b).   In contrast, the PLGA-ITZ NPs showed greater inhibition compared to Water-ITZ and Tx-

ITZ emulsion (Figure 2.4a, 2.4b).   The PLGA-ITZ NP suspension (10mg/ml equivalent of 0.3 

mg/ml ITZ) gave clear inhibition zones beyond the point of application (Figure 2.4a).  Smaller 

inhibition zones were observed at lower NP concentration of PLGA-ITZ NPs (1mg/ml equivalent of 

0.03 mg/ml of ITZ); however, even at this low particle concentration clear defined inhibition zones 

were seen rivaling what was observed in Water-ITZ and Tx-ITZ formulations.  This indicated an 

enhanced antifungal capability of the PLGA-ITZ NPs in comparison to other formulations.  

 

 

Figure 2.3:  Plates inoculated with 50µl of A. flavus cells at 5x10
5
 cells per ml and incubated at 

37ºC, treated with 10 µl of (a) ITZ in water and (b) emulsion of ITZ in Tx-100 at 0.3 mg/ml.  

Circles represent location of applied treatments. 
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Figure 2.4:  Plates inoculated with 50µl of A. flavus cells at 5x10
5
 cells per ml and incubated at 

37ºC, treated with 10 µl of (a) polylactic-co-glycolic acid-Itraconazole Nanoparticles at 10 

mg/ml (equivalent to 0.3 mg of ITZ), and (b) polylactic-co-glycolic acid-Itraconazole 

Nanoparticles at 1 mg/ml (equivalent to 0.03 mg/ml ITZ).  Circles represent location of 

applied treatments. 

 

 The efficacy of the NP treatments compared to water-ITZ and Tx-ITZ emulsion were 

assessed by microscopically viewing the zone of inhibition on PDA on a microscope slide. A cotton 

thread with attached GFP fungal spores produced a line of growth into the treated areas (Figure 

2.5).  Similar to the culture plate experiment, the PLGA-ITZ NPs proved to be more effective in 

inhibiting growth, seen best at the highest concentration of 10 mg/ml and 1 mg/ml NP suspensions 

(equivalent to 0.3 and 0.03 mg/ml ITZ, respectively).    The “growth front” shows a dip beyond the 

point of application of the PLGA-ITZ NPs at 10 mg/ml and 1 mg/ml.  Inhibition zones of 

approximately 6 mm and 4 mm were observed, respectively.  The NPs at 0.1 mg/ml and the blank 

NPs showed the least effect, with the blank NPs having no effect.  Tx-ITZ had slightly better 

inhibition compared to water-ITZ seen by maximum inhibition zones of approximately 2 mm and 3 

mm respectively at the highest concentration of 30 mg/ml ITZ. 
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Figure 2.5:  Cotton thread with attached A. flavus spores secured to PDA surface.  Photos 

taken at 3 days(top row)  and 5 days (bottom row) following placement of thread.  Left to 

right: ITZ in water 30 mg/ml, 3 mg/ml, 0.3ml/ml and 0.03 mg/ml; emulsion of ITZ in Tx-100 

at 30 mg/ml, 3 mg/ml, 0.3 mg/ml and 0.03 mg/ml; polylactic-co-glycolic acid-Itraconazole 

nanoparticles at 10 mg/ml, 1 mg/ml and 0.1 mg/ml (equivalent to 0.3, 0.03, 0.003 mg/ml ITZ, 

respectively).  

 
2.3.3  GFP expressing A. flavus Fluorescence Quantification    

2.3.3.1  Treated Immediately After Inoculation    

 A 96 well plate was inoculated with GFP expressing Aspergillus flavus and subjected to 

three treatments (Water-ITZ, TX-ITZ, and PLGA-ITZ NPs) which were compared to a control (no 

treatment) and blank NPs.  Biomass was directly proportional to fluorescence and quenching of 

fluorescence was indicative of inhibition [26].  In general, at all concentrations of ITZ, NPs had a 

more immediate and superior effect compared to other treatments and lasted over the eleven day 

period (Figure 2.6).  Statistical differences are shown in the appendix (Appendix A-Tables S1 to 

S3).   

 The effect of water-ITZ, Tx-ITZ emulsion, and PLGA-ITZ NPs on inhibiting A.flavus 

growth was least at the lowest concentrations of 0.003 mg/ml ITZ (Figure 2.6a).  Treating the 

spores with blank NPs showed no significant decrease in fluorescence indicating that the particles 

themselves were not toxic (Appendix A-Table S1).  Water-ITZ did not have a significantly different 

impact, reaching a maximum of 600 fluorescence units on day 2, compared to the A.flavus control 
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which reached maximum fluorescence of approximately 800 units on day 2.  Tx-ITZ showed a 

stronger effect, seen by lower fluorescence levels of 200 units on day 2 and a maximum of 350 units 

on day 3 compared to water-ITZ during the first three days.  The PLGA-ITZ NPs had the greatest 

inhibitory effect seen on day 2, where fluorescence measured approximately 100 units, or 85% 

inhibition compared to the control.  Because of the low ITZ concentrations, the inhibitory effect was 

limited and fluorescence increased to 350 units on day 3, however to levels still significantly lower 

than those of the control (Appendix A-Table S1).  

 At 0.03 mg/ml ITZ, water-ITZ again had minimal inhibition (Figure 2.6b) and followed 

what was seen at 0.003 mg/ml ITZ.  The Tx-ITZ emulsion showed significant inhibition, measuring 

approximately 100 fluorescence units on day two, or 85% inhibition; fluorescence reached a 

maximum of 200 units on day three, and steadily declined in following days from the accumulation 

of waste by-products.  The PLGA-ITZ NPs had considerable inhibition through the first 5 days seen 

by less than 2 fluorescence units (Appendix A-Table S2).   

 Increasing the ITZ concentration to 0.3 mg/ml increased inhibition (Figure 2.6c).  Water-

ITZ showed some inhibitory effect on day 2 seen by fluorescence of 250 units, or 65 % inhibition; 

however the effect diminished on day 3 before gradually declining and was not found significantly 

different from the control (Appendix A-Table S3).  Tx-ITZ had a greater inhibitory effect during the 

first three days compared to water-ITZ and the control.  On days 2 and 3, fluorescence was recorded 

at 50 units and 60 units, respectively, equivalent to 95% and 89% inhibition.  Although, following 

day 3 the inhibitory effect decreased seen by an increase to approximately 400 fluorescence units on 

days 4 and 7, after which fluorescence declined.  The PLGA-ITZ NPs maintained near zero 

fluorescence throughout the study, similar to what was seen at 0.03 mg/ml ITZ (Figure 2.6b), and 
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was significantly different from all treatments and the control over the first four days (Appendix A-

Table S3). 

 

Figure 2.6a:  GFP-expressing A.flavus at 5x10
5
 spores/ml for each treatment, at 37ºC, in a 96 

well plate seeded with glucose salts media and treated immediately following inoculation. 

Fluorescence comparison of ITZ in water, Tx-100 ITZ emulsion, and polylactic-co-glycolic 

acid nanoparticles with entrapped ITZ at 0.003 mg/ml ITZ (n=3 wells). 

 

Figure 2.6b:  Fluorescence comparison of ITZ in water, Tx-100 ITZ emulsion, and polylactic-

co-glycolic acid nanoparticles with entrapped ITZ at 0.03 mg/ml ITZ (n=3 wells). 
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Figure 2.6c:  Fluorescence comparison of ITZ in water, Tx-100 ITZ emulsion, and polylactic-

co-glycolic acid nanoparticles with entrapped ITZ at 0.3 mg/ml ITZ (n=3 wells). 

        The antifungal effect of the three treatments was studied as a function of concentration and 

time (Figure 2.7).  High ITZ concentrations of 3 and 30 mg/ml in free drug formulations were 

included in this study in order to observe where a considerable antifungal effect occurred in 

comparison to the NP treatments. The inhibitory effect was directly proportional to the ITZ 

concentration (Figures 2.7a and 2.7b).    The water-ITZ graph shows that low fluorescence levels 

(~50 units) were maintained through day 2 at 3 mg/ml ITZ, after which an increase to ~400 

fluorescence units on day 4 was observed (Figure 2.7a).  At 30 mg/ml, a maximum of 100 

fluorescence units was measured on day 2, followed by decreasing fluorescence levels.  Tx-ITZ at 3 

mg/ml showed fluorescence no higher than 70 units, and no greater than 100 units at 30 mg/ml 

(Figure 2.7b).  Conversely, PLGA-ITZ NPs proved to have a superior antifungal effect even at 100 

times less ITZ concentration (Figure 2.7c).  It should be noted that while a concentration as high as 

30 mg/ml would not be used in direct treatment, the results serve to show the point at which free 

ITZ formulations have an antifungal effect comparable to NP formulations.  
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Figure 2.7a:  Fluorescence of GFP-expressing A.flavus treated immediately after inoculation 

of ITZ in water (water-ITZ) at 30, 3, 0.3, 0.03, and 0.003 mg/ml ITZ,  
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Figure 2.7b:  Fluorescence of GFP-expressing A.flavus treated immediately after inoculation 

of emulsion of ITZ in Tx-100 (Tx-ITZ) at 30, 3, 0.3, 0.03, and 0.003 mg/ml ITZ. 
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Figure 2.7c:  Fluorescence of GFP-expressing A.flavus treated immediately after inoculation 

of polylactic-co-glycolic acid-Itraconazole nanoparticles at 10 mg/ml, 1 mg/ml and 0.1 mg/ml 

(equivalent to 0.3, 0.03, 0.003 mg/ml ITZ, respectively). 

 
2.3.3.2  Treated 12 Hours After Inoculation 

 A second 96 well plate was inoculated with GFP A.flavus and treated 12 hours later to 

demonstrate efficacy after the spores germinated and began to grow.  Figure 2.8 shows the 

fluorescence of the three treatments (Water-ITZ, TX-ITZ and PLGA-ITZ NPs) at 0.003, 0.03, and 

0.3 mg/ml ITZ.  It is evident that the PLGA-ITZ NPs still showed superior inhibitory activity at all 

ITZ concentrations followed by Tx-ITZ and water-ITZ.  Water-ITZ had minimal inhibition, 

observed only during the first day at 0.3 mg/ml ITZ.  Tx-ITZ exhibited a far greater effect over the 

eleven days than water-ITZ at higher ITZ concentrations; however this effect was limited at lower 

concentrations.  Statistical differences are shown in Tables S4-S6 (Appendix A).  

         At the lowest ITZ concentration of 0.003 mg/ml, Water-ITZ showed the least inhibition, 

which occurred during the first two days (Figure 2.8a).  Fluorescence on day 1 and 2 was 150 and 

(c) 
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400 units, respectively, yielding 40% inhibition compared to the control, which was found not 

significantly different (Appendix A-Table S4).  In comparison, Tx-ITZ inhibited growth to a greater 

degree during the first two days, seen by fluorescence levels of approximately 50 and 100 units, or 

75% and 85% inhibition, respectively.  A large increase in fluorescence was observed following day 

2 up to day 4, after which fluorescence dropped off.  The PLGA-ITZ NPs inhibited A.flavus for the 

first 5 days considerably better than water-ITZ.  On days 1 and 2, 20 and 30 fluorescence units were 

observed, equaling to 85% and 95% inhibition (Appendix A-Table S4) 

        At 0.03 mg/ml ITZ, water-ITZ followed a trend similar to what was seen at 0.003 mg/ml 

ITZ (Figure 2.8b).  Minimal inhibition was observed and the fluorescence levels closely followed 

those of the control (Appendix A-Table S5).   During the first three days Tx-ITZ fluorescence was 

no higher than 100 units, but spiked on day 4 before dropping off.  PLGA-ITZ NPs had significant 

impact, seen by fluorescence units less than 1 during the first eight days (Appendix A-Table S5).  

Slight increases were seen latter, but fluorescence no higher than 50 units was observed. 

        At 0.3 mg/ml ITZ, water-ITZ delayed growth only to a certain degree (Figure 2.8c); the 

difference between water-ITZ and control was only found significant for day 1 (Appendix A-Table 

S6).  Fluorescence was recorded at approximately 50 units on day 1 and 300 units on day 2, 

equivalent to 85% and 55% inhibition, respectively.  Tx-ITZ exhibited significant inhibition, as can 

be seen by low fluorescence levels no higher than 50 units over the eleven days.  PLGA-ITZ NPs 

still showed a superior antifungal effect seen by fluorescence units less than 2 for the majority of the 

study, with slight increases at the end of the 11 days.  Even though Tx-ITZ had considerable 

inhibition, the PLGA-ITZ NPs maintained a significantly lower fluorescence profile (Appendix A-

Table S6). 
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 The fluorescence effect of each treatment as a function of concentration and time showed 

that even at the highest concentration of 30 mg/ml ITZ, water-ITZ fluorescence increased as a 

function of time (Figure 2.9a).  Tx-ITZ showed a much stronger effect with fluorescence no higher 

than 100 units (Figure 2.9b).  Even so, the PLGA-ITZ NPs maintained the lowest fluorescence 

levels among the treatments over the 11 day period, seen by a predominantly flat fluorescence 

profile at 100 times less ITZ (Figure 2.9c). 

 

Figure 2.8a:  GFP-expressing A.flavus at 5x10
5
 spores/ml for each treatment, at 37ºC, in a 96 

well plate seeded with glucose salts media and treated 12 hours after inoculation. Fluorescence 

comparison of ITZ in water, Tx-100 ITZ emulsion, and polylactic-co-glycolic acid 

nanoparticles with entrapped ITZ at 0.003 mg/ml ITZ (n=3 wells). 
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Figure 2.8b:  Fluorescence comparison of ITZ in water, Tx-100 ITZ emulsion, and polylactic-

co-glycolic acid nanoparticles with entrapped ITZ at 0.03 mg/ml ITZ (n=3 wells). 

  

Figure 2.8c:  Fluorescence comparison of ITZ in water, Tx-100 ITZ emulsion, and polylactic-

co-glycolic acid nanoparticles with entrapped ITZ at 0.3 mg/ml ITZ (n=3 wells). 
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Figure 2.9a:  Fluorescence of GFP-expressing A.flavus treated 12 hours after inoculation of 

ITZ in water (water-ITZ) at 30, 3, 0.3, 0.03, and 0.003 mg/ml. 
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Figure 2.9b:  Fluorescence of GFP-expressing A.flavus treated 12 hours after inoculation 

emulsion of ITZ in Tx-100 (Tx-ITZ) at 30, 3, 0.3, 0.03, and 0.003 mg/ml 
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Figure 2.9c:  Fluorescence of GFP-expressing A.flavus treated 12 hours after inoculation of 

polylactic-co-glycolic acid-Itraconazole nanoparticles at 10 mg/ml, 1 mg/ml and 0.1 mg/ml 

(equivalent to 0.3, 0.03, 0.003 mg/ml ITZ, respectively) 

              

2.4  Discussion 

           In general, nanoparticles of small size (approximately 100-500 nm) can accumulate at and 

possibly be translocated across cell membranes, leading to increased drug efficacy [17, 28].  Loaded 

PLGA-ITZ NPs, approximately 232 nm with an entrapment efficiency of 96% at 12.5 % loading 

were used in the in-vitro studies.   

 ITZ release from the 12.5 % loaded PLGA-ITZ nanoparticles showed an initial jump, 

commonly known as the burst effect, due to the release of the drug present near the particle surface 

(Figure 2.2).  Thereafter, the drug was released by a combination of diffusion and particle 

degradation [29-30].  From this profile, it was apparent that a steady dose of ITZ could be 

administered over five days, and consequently increase the efficacy of the drug over this time 

period. 

(c) 
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 In addition to providing a time-release profile, PLGA nanoparticles were expected to aid in 

dispersing ITZ in water and improving its cellular uptake. ITZ functions by inhibiting the 

cytochrome P450-dependent 14-α-sterol demethylase synthesis of ergosterol, a vital component of 

fungal cell membranes [31].  Ergosterol synthesis occurs in the mitochondria and endoplasmic 

reticulum, requiring internalization of ITZ to inhibit synthesis [31-32].  Because the inoculated 

medium surface is hydrophilic and the drug is hydrophobic, a barrier exists between the two 

surfaces limiting contact.  However, fungi possess small secreted surface active proteins known as 

hydrophobins that self assemble at hydrophilic-hydrophobic interfaces [33].  When hyphae are 

submerged in media, these hydrophobins are secreted into the surrounding medium from the hyphae 

apical tip [33].  Once they encounter a hydrophobic environment, such as ITZ, they self assemble 

with the hydrophilic side facing the aqueous environment and hydrophobic side toward the drug, 

forming an amphipathic membrane [34].  In this manner contact between the drug and fungal 

surface is enhanced allowing some inhibitory effect of water-ITZ (Figure 2.3a).  However, the 

effect is minimized as time progresses, as seen by increased growth near the drug.   

 Since the nanoparticles are water soluble, contact with the fungal spores on the plate surface 

occurs to a greater degree compared to other treatments.  This event is also facilitated by the particle 

size. It has been reported that smaller sized NPs (100 to 500 nm) accumulate at cell wall surfaces 

and are internalized with greater ease compared to larger sized particles [10, 17, 28].  These 

characteristics can aid in delivering ITZ by two mechanisms: first by releasing ITZ near the cell 

surface resulting in a quicker internalization, and second by cellular uptake of the particle followed 

by release of ITZ in the cytosol, however recent literature suggests the former is a more likely 

mechanism [35]. In combination to these mechanisms, the sustained release of ITZ explains the 

larger inhibition zones observed over time with the PLGA-ITZ NPs compared to water-ITZ and Tx-
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ITZ (Figure 2.4).  Water-ITZ and the Tx-ITZ emulsion provide an initial high dose of antifungal 

resulting in some inhibitory effect, however as the drug is consumed by the spores or degraded the 

concentration decreases.  This gradual decrease allowed surrounding spores to grow and invade the 

point of application.  On the other hand, due to the gradual release of ITZ from the NPs, the 

surrounding spores sensed unfavorable and stressful conditions, causing the hyphae branches to not 

grow into the point of application, indicated by the large zones of clearing [36]. 

 The limited inhibitory effect of water-ITZ and Tx-ITZ was also observed in the GFP 96-well 

quantitative experiments (Figures 2.6 through 2.9). Compared to water-ITZ, the Tx-ITZ emulsion 

showed a greater inhibitory effect during the first two days; an effect which was not clearly seen in 

the culture plates (Figure 2.3 and Figure 2.4).  In the culture plates, a decrease in inhibitory effect 

was observed as time progressed, attributed to decreasing levels of ITZ.  In the GFP study, the 

acidity of the microenvironment in the well increased as growth progressed and waste by-products 

accumulated. It is possible that the increased acidity resulted in higher ITZ solubility, and inhibited 

fungal growth.  Figures 2.6 through 2.9 showed that in the first 4 days, when spores were treated 

immediately or 12 hours after inoculation, Tx-ITZ had more success in inhibiting A.flavus growth, 

with higher concentrations having the greatest effect.   This could be expected since solubilizing 

ITZ in Tx-100 facilitated ITZ internalization.  The inhibitory effect at lower concentrations was 

limited to the first four days and spores that survived from the harsh conditions of the drug were 

able to grow later on.  

 In contrast, PLGA-ITZ NPs demonstrated an enhanced inhibitory effect.  As mentioned, 

since the NPs are small in size and water soluble, it is believed that the particles have increased 

contact with the cells, leading to faster drug internalization [20, 37].  The steady release of ITZ 

maintained low fluorescence levels, seen best at particle concentrations of 1 and 10 mg/ml (0.03 and 



www.manaraa.com

33 

 

0.3 mg/ml ITZ) (Figures 2.6 and 2.8).  These results paralleled what was seen in the culture plates, 

where larger inhibition zones were noticed when PLGA-ITZ NPs were applied, due to the ability of 

the NP suspension to penetrate the surrounding media and spores (Figure 2.4).  Figure 2.5 further 

showed that when 2 µl of PLGA-ITZ NPs were applied away from an inoculated surface, inhibition 

of spores 6 mm away from the point of application was observed at 10 mg/ml NPs (0.3 mg/ml ITZ).  

Water-ITZ and Tx-ITZ were not capable of producing significant inhibition zones which could 

possibly be a result of limited diffusibility.  The stressful conditions produced by the constant ITZ 

concentrations forced spores to not grow into the treated area.  The growth of fungi can be split into 

phases where the initial lag phase is preparation for growth/adaptation, followed by an exponential 

phase with accelerated growth [38].  Combining the NPs small size and their ability to gradually 

release ITZ, the exponential phase was prevented from beginning and growth was inhibited (Figure 

2.6).  Twelve hours after seeding, an immediate effect was also observed, however as the drug was 

released and consumed, any surviving spores flourished, as seen by slight increases in fluorescence 

towards the end of the study (Figure 2.8).  However, even compared to higher ITZ concentrations of 

3 and 30 mg/ml of water-ITZ and Tx-ITZ emulsion, the NPs still showed a stronger antifungal 

result at 100 times less ITZ.  This reinforces our claim that the PLGA-ITZ NPs improve drug 

penetration into the spores and increase the antifungal effect. 

 PLGA NPs as an antifungal delivery vector has shown to be greatly effective in this study, 

however concerns regarding the particular method of delivery in vivo should not be overlooked.  

For example in oral delivery, nanoparticles can potentially cross the epithelial wall of the intestine, 

but the percentage of particles that actually reach the bloodstream is crucial [39-41].  This can be 

dictated by the properties of the mucus layer and nanoparticle, as well as what occurs in the 

stomach prior to entering the GI tract [42].  Intravenous injection is also a common delivery option 
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where nanoparticles can provide protection from premature drug clearance, however, clearance of 

nanoparticles themselves and whether they reach target/infected sites are major points of interest 

[43-44].  Other direct routes such as pulmonary delivery can be implemented and provide a 

localized therapeutic effect [45-47].  Although, similar concerns of particle clearance and depth of 

penetration in the lungs are important issues to be studied closely.  Nonetheless, the benefits 

provided by polymeric nanoparticles, as seen in this study, can greatly improve therapeutic efficacy, 

warranting further in-depth investigation.  

 2.5  Conclusions 

         Entrapment of ITZ in PLGA NPs has proven to be an effective means of improving delivery 

of this antifungal agent.  Strong visual evidence of large inhibition zones were observed in PLGA-

ITZ NP treated areas compared to free ITZ formulations in Petri plate studies.  GFP quantitative 

studies revealed that when nanoparticles were added as a pre-germination and 12 hours post growth 

treatment, low fluorescence profiles were maintained over the span of the study at 100 times less 

antifungal as compared to other treatments studied.  These results suggested that the extracellular 

release of ITZ near the cell surface can lead to expedited drug internalization, and steady release of 

ITZ can maintain concentrations, preventing further fungal growth.  The ability to utilize 100 times 

less ITZ and produce greater inhibition can alleviate the concerns related to high costs and toxicity 

of many oral drugs.    This becomes important for those having underlying illnesses such as cancer, 

HIV, Aspergillosis, etc., where a compromised immune system puts patients at risk, and swift 

recovery is desired.  The antifungal effect demonstrated here can help in preventing and treating 

those that may be predisposed to infection.  To further elucidate how this occurs, additional studies 

must be conducted to verify the mechanism of action. 
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2.6  Future Perspectives 

 Nanotechnology is at the forefront of developing efficient drug delivery systems and is 

beginning to address many of the shortcomings of traditional drugs on the market.   Biocompatible 

techniques for treating numerous diseases and infections are a goal that polymeric nanoparticles can 

achieve.  What has been determined in this paper is that PLGA nanoparticles aid in delivery of 

antifungal agents to fungal cells and can provide for a more efficient antifungal treatment. It is 

envisioned that targeted antifungal delivery will be developed to reduce side effects from excess 

dosing, and expedite treatment and recovery in all aspects of medicine.  Further studies on particle 

tracking and particle-cell interactions, and the antifungal capability of PLGA-ITZ NPs at other 

growth periods of A.flavus are intended.  In addition, the effect of particle properties (i.e. size and 

composition) and their impact on ITZ release rates shall provide more clarity on the antifungal 

effect being observed.  As a whole, these further studies are expected to give more insight on the 

mechanism of action.  This may provide ideas on more direct and efficient routes of antifungal drug 

delivery.  As more information becomes available, how nanodelivery systems function on a 

fundamental level will be revealed.  This shall open the door for nanomedicine to be a more integral 

part of not only actively treating fungal diseases, but also preventing fungal and other debilitating 

diseases from occurring. 
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Chapter 3. Size Dependency on PLGA Nanoparticle Uptake and Antifungal 
Activity against Aspergillus flavus 

3.1:  Introduction 

 Polymeric nanoparticles (NPs) composed of poly(lactic-co-glycolic) acid (PLGA) have been 

extensively investigated in various forms for drug delivery due to their biocompatible 

characteristics, protection of entrapped bioactive agents, and controllable drug release 

characteristics [1-4].  Applications of PLGA NPs are broad, in areas such as gene therapy, targeted 

drug delivery, and delivery of active agents such as proteins, vitamins, and pharmaceutical drugs [5-

13].  In antifungal therapy, a major concern with current available antifungal drugs is the low 

systemic bioavailability stemming from low aqueous solubility and premature drug degradation.  

Itraconazole (ITZ), a broad spectrum triazole, is one such antifungal with a bioavailability of only 

~40% to ~50% due to its low aqueous solubility [14-15].  For individuals infected with 

opportunistic mycoses, particularly those who are immunosuppressed, this shortcoming can extend 

treatment times allowing further spreading of infections.  Entrapping antifungal drugs in PLGA NPs 

can address some these concerns and improve treatment efficacy.     

In recent studies, PLGA nanoparticles have proven to be a powerful tool in antifungal 

delivery compared to commercially available drugs [16-17].  Amaral et al (2009) formulated PLGA 

and dimercaptosuccinic (DMSA) blend nanoparticles with entrapped Amphotericin B in an attempt 

to minimize the dose frequency when treating mycoses [18].  Compared to conventional 

Amphotericin B, results showed a 3-fold decrease in dosing frequency.  In a previously conducted 

study, we have also shown strong antifungal activity with ITZ entrapped PLGA NPs at 100x less 

drug concentrations compared to free ITZ [19].  Similarly, Peng et al (2008) studied Voriconazole 

entrapped PLGA nanoparticles and showed, in-vitro and in-vivo, more potent antifungal efficacy 

compared to free Voriconazole [20].  While these studies show a potent antifungal effect by drug 
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entrapment in PLGA nanoparticles, in general a mechanism of action is not yet well understood.  

Many studies exist in literature showing superior antifungal effect of nanoencapsulated drugs, 

however to our knowledge, cellular uptake and antifungal activity based on nanoparticle size in 

fungal cells has not yet been investigated.     

Cellular uptake of nanoparticles based on particle size is believed to be a contributing factor 

alongside with sustained drug concentrations resulting in therapeutic levels for extended periods of 

time [21-22].  In general, it is postulated that smaller nanoparticles are uptaken more effectively by 

cells.  For example, in studying nanoparticle uptake in the gastrointestinal track, Desai et al (1996) 

showed 100 nm PLGA nanoparticle uptake to be more efficient than 500 nm, 1 µm, and 10 µm 

particles [23-24]. It is believed that nanoparticle uptake could be based on endocytosis by intestinal 

enterocytes or lymphatic uptake of small particles [25].  Likewise, Qaddoumi et al (2004) 

demonstrated that PLGA nanoparticles measuring 100 nm were uptaken better than 800 nm and 

10µm particles by rabbit conjunctival epithelial cells [26].  Also, in various cancer cell lines, studies 

showed that particles ranging from 50-500 nm were internalized effectively depending on the cell 

type [27-29].  Zauner et al (2001) studied different particle sizes and the impact on internalization in 

different cell types [30].  Findings showed that while Hepatic cell lines had internalization with 

particles of 90 nm, 220 nm, and only marginally at 560 nm, other endothelial cell lines showed 

uptake of particles as large as 1000 nm.  Numerous endocytic pathways have been suggested as 

potential uptake mechanisms.  

The present study was designed to understand the effect of PLGA nanoparticle size on 

uptake and the respective antifungal activity of entrapped ITZ.  PLGA nanoparticles with entrapped 

Itraconazole (PLGA-ITZ NP) of ~200 nm, ~600 nm, and ~1000 nm were tested on GFP-expressing 

Aspergillus flavus for differences in inhibitory activity against two other ITZ formulations, ITZ in 
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water (Water-ITZ) and emulsified ITZ in 0.03% Triton X-100 (Tx-ITZ).  In order to understand the 

treatment effect at different fungal growth stages, the antifungal capability was tested at the time of 

seeding and 12 hours after spore germination.  In parallel, nanoparticle uptake by A.flavus was 

studied with ~200 nm (small) and ~1000 nm (large) nanoparticles entrapped with the fluorescent 

lipophilic marker coumarin-6 (PLGA-C6).  Coumarin-6 is known to be non-toxic and released 

minimally at acidic pHs from PLGA nanoparticles, and was therefore chosen as an appropriate 

marker for nanoparticle tracking [28, 31-32]. 

3.2  Materials and Methods 

3.2.1  Materials 

Itraconazole, PLGA (50/50) 5-15 kDa, dichloromethane, polyvinyl alcohol (31-50 

kDa),Triton X-100, and Coumarin-6 were purchased from Sigma Chemical Co. (St. Louis, MO).  

Aspergillus flavus70s  and Aspergillus flavus70s GFP were acquired from ARS USDA Southern 

Regional Research Center (New Orleans, LA).  Corning Costar black clear bottom 96 well plates 

were acquired from Fisher Scientific (Pittsburgh, PA). 

3.2.2  PLGA-Itraconazole Nanoparticle Synthesis 

 The unloaded PLGA nanoparticles and the ITZ loaded nanoparticles were synthesized by an 

emulsion-solvent evaporation method, purified by dialysis, and freeze-dried for further analysis.  

PLGA-ITZ nanoparticles of 232 nm, 630 nm and 1060 nm range were synthesized by emulsion 

evaporation as follows.  A 1% (for 232 nm NPs), 12% (for 630 nm NPs) and 15 % (for 1060 nm 

NPs) (w/v) PLGA solution was formed by dissolving 50:50 PLGA in Dichloromethane (DCM).  

ITZ (1.6 mg, 15 mg, and 19 mg) was dissolved into 1.25 ml of 1%, 12% and 15% (w/v) PLGA in 

DCM to form an organic phase at 1:8 w/w Itraconazole:PLGA.  NPs measuring  232 nm were 

synthesized by adding the organic phase to 12.5 ml of 0.3% (w/v) polyvinyl alcohol aqueous 
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solution under mixing using an Ultra Turrax t-18 basic (IKA Works, Wilmington, NC).  Sonication 

was then performed for 10 minutes with pulses of 2 seconds on and 2 seconds off, in order to form a 

(O/W) micro-emulsion using a Vibra Cell vc 750 (Sonics, Newton, CT).  The DCM was next 

removed from the mixture by evaporation with a Rotovapor R-124 (Buchi, Switzerland).  NPs 

measuring 630 nm and 1060 nm were synthesized by adding the organic phase to 12.5 ml aqueous 

solution of 0.3% (w/v) polyvinyl alcohol under continuous sonication at 35% amplitude for 1 

minute, and then pulsed for 1.5 minutes with pulses of 2 seconds on and 2 seconds off to form the 

(O/W) emulsion.  DCM was then removed by evaporation.  The evaporation of the organic solvent 

allowed for the formation of the nanoparticles and the encapsulation of ITZ.  It should be noted that 

obtaining particles of 630 nm and 1060 nm was accomplished by an additional fractionation step by 

centrifuging synthesized samples at 5000 rpm (12% PLGA-ITZ NPs) and 3500 rpm (15% PLGA-

ITZ NPs) for 10 min. Empty PLGA nanoparticles were synthesized following the same procedure, 

with the exception that no ITZ was added to the organic phase.   

 A dialysis step was applied to remove excess surfactant and associated ITZ from the 

solution following NP synthesis.  Any ITZ not removed by this method, whether entrapped or 

marginally associated with the surface of the particle, was considered entrapped.  A Specrta/Por CE 

cellulose ester membrane (Spectrum, Rancho Dominquez, CA) with a molecular weight cut-off of 

100 kDa was used in the dialysis step.  The nanoparticles underwent dialysis in a 2.5 L tank with 

nano-pure water, for eight hours, changing the water after four hours to facilitate the dialysis 

process.  A final freeze drying step was applied for 48 hours at -80oC using a Freezone 4.5 

(Labconco, Kansas City, MO). 
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3.2.3  Coumarin-6 Loaded PLGA Nanoparticle Synthesis 

 The lipophilic fluorescent marker coumarin-6 was used to synthesize fluorescent NPs of 203 

nm and 1206 nm.  Particles of 203 nm were formed by dissolving coumarin-6 into a 1% PLGA-

DCM solution, and added to an aqueous solution of 0.3% PVA under mixing.  Sonication was then 

performed for 10 minutes with pulses of 2 seconds on and 2 seconds off, followed by evaporation of 

DCM. Before freeze drying, particles were centrifuged at 20,000 rpm for 10 minutes and washed 

with deionized water to remove any free coumarin-6.   

Nanoparticles measuring 1206 nm with entrapped coumarin-6 were synthesized by 

dissolving coumarin-6 into a 15% PLGA-DCM solution and added to an aqueous solution of 0.3% 

(w/v) polyvinyl alcohol under continuous sonication at 35% amplitude for 1 minute, and then 

pulsed for 1.5 minutes with pulses of 2 seconds on and 2 seconds off.  DCM was then removed by 

evaporation, and particles were fractionated into the specified size by centrifuging at 3500 rpm for 

10 min, and then freeze dried. 

3.2.4  Nanoparticle Size Determination 

Nanoparticles were tested for size and size distribution by dynamic light scattering (DLS) 

using the Malvern Zetasizer Nano ZS (Malvern Instruments Inc., Southborough, MA).  A volume of 

1.3 ml of each sample at a concentration of 0.3 mg/ml was placed in a polystyrene cuvette and 

measured at 25ºC at pH 6.5.  The mean values of size and PDI were determined using a mono-

modal distribution. 

3.2.5  Nanoparticle Uptake Studies 

 PLGA nanoparticle uptake by fungal cells as a function of size was determined by 

visualizing the interaction between coumarin-6 entrapped PLGA NPs (PLGA-C6) nanoparticles and 

Aspergillus flavus in two manners:  immediate interaction upon particle and hyphae contact, and in 
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a time dependent manner.  Cellular uptake of small (203 nm) and large (1206 nm) particles were 

tested, and compared against free coumarin-6 in 5% alcohol and emulsified coumarin-6 in 0.03% 

Triton X-100 (Tx-C6).  A dye concentration of 0.3 mg/ml, equivalent to the maximum treatment 

concentration of PLGA-ITZ NPs (see Section 3.2.6), was used in all cases.  The extreme particle 

sizes (203 and 1206 nm) were to observe the upper and lower limit differences in nanoparticle 

uptake.    

 A.flavus was grown for 24 hours in a microcentrifuge tube containing 1.25x glucose salts 

media at 37°C.  A small section of grown hyphae were taken from the visible lawn and placed on a 

microscope slide.  A 1 µl aliquot of PLGA-C6 nanoparticles at 10 mg/ml was added to the hyphae, 

covered with a coverslip, and immediately visualized using a Leica CTRMIC deconvolution 

fluorescence microscope (Leica Microsystems, Bannockburn, IL) at 100x magnification.  Similarly, 

1 µl of free coumarin-6 and Tx-C6 were spotted onto the hyphae and visualized under the 

microscope.  A GFP filter cube was used with excitation and emission wavelengths of 389 nm and 

509 nm, respectively.  

 A timed study was then conducted to determine if incubation of fluorescence nanoparticles 

and A.flavus promoted particle internalization.  200 µl of glucose salts media, 50 µl of A.flavus 

spores at 5x105 spores/ml, and 10 µl of PLGA-C6 nanoparticles at 10 mg/ml were incubated in a 

microcentrifuge tube for 0, 1, 12, and 24 hours at 37°C.  1 µl of each time point was placed on a 

microscope slide, covered with a coverslip, and photographed.  Time points represented various 

fungal growth stages.  All images were shown in differential interference contrast (DIC) and 

fluorescence, and then overlayed.        
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3.2.6  Size Impact on Antifungal Activity of PLGA-ITZ NPs on GFP Expressing A.flavus 

   Different sized particles were tested to determine if particle size (232 nm, 630 nm and 1206 

nm) played a role in the antifungal capability of entrapped ITZ.  Quantification of fungal growth 

inhibition was accomplished using GFP-expressing A.flavus, on the basis that biomass was directly 

proportional to fluorescence [33].  Black clear bottom 96 well plates were inoculated with 50µl of a 

conidial suspension (5x105 spores/ml) containing 200 µl of 1.25x glucose salts medium.  Free ITZ 

formulations of ITZ in water (0.3, 0.03, 0.003 mg/ml) and Tx-ITZ emulsion (0.3, 0.03, 0.003 mg/ml 

ITZ) were tested against NP formulations.  Different sized PLGA-ITZ NPs equaling 0.3, 0.03, 

0.003 mg/ml ITZ and blank NPs at weights equivalent to max treatment concentrations were 

compared to free ITZ formulations.  Treatments (10 µl) were added immediately following 

inoculation (0 h) and 12 hours after inoculation (12 h) to the respective wells and inhibition was 

quantified.  Fluorescent measurements were taken once a day for eleven days using a Synergy HT 

Multi-Mode Microplate Reader (BioTek, Winooski, VT), at excitation and emission wavelengths of 

485 nm and 528 nm, respectively.  Fluorescence drop off in latter parts of study were indicative of 

accumulation of waste-by product.  Fluorescence values are the mean of 3 replications.  

 The natural log of fluorescence was analyzed using the MIXED procedure of SAS (SAS 

system, SAS Institute Inc., Cary, NC).  The two treatment time exposure testings (0 h and 12 h) 

were analyzed separately.  Furthermore, treatments were compared over time separately at the 

various ITZ concentrations. The statistical analysis focused on days 0 to 5 for both the 0 h and 12 h 

testing (Appendix B-Tables B1 to B6), where most growth and antifungal activity occurred.  Within 

each ITZ concentration the model included the fixed effects of treatment, time and their interaction. 

 Time was analyzed as repeated measures using the covariance structure that best fitted the data 

based on the Akaike Information Criterion.  When the treatment by day interaction was significant, 
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comparisons between means were performed using the Tukey post-hoc multiple test adjustment. 

 Statistical significance was declared at P ≤ 0.05. 

3.3  Results 

3.3.1  Nanoparticle Characterization:  Size and Size Distribution  

 1%, 12% and 15% PLGA-ITZ NPs used in the antifungal studies measured a size of 232 nm 

and 0.213±0.035 PDI, 630 ± 22 nm and 0.29±.057 PDI, and 1060 ±146 nm and 0.45± 0.1 PDI, 

respectively.  Smallest and largest sized particles only were studied in the nanoparticle uptake 

studies to observe the upper and lower limits of nanoparticle uptake by A.flavus.   Hence, 1% and 

15% PLGA-C6 nanoparticles measuring 203 ±16 nm with a 0.17 ±0.019 PDI, and 1206 ±15 nm and 

0.5± 0.14 PDI were used in the A. flavus uptake studies.   

3.3.2  Size Dependency of Nanoparticle Uptake at Different A.flavus Growth Stages  

Fluorescent pictures of 203 nm and 1206 nm PLGA-C6 nanoparticles and A.flavus were 

taken to determine if particles were internalized and if the event was dependent on particle size.  

Uptake of 203 nm particles was carried out as a function of time as well, to identify if the growth 

stage had an impact on nanoparticle uptake.  Particle interaction with fungal cells was compared 

visually against free coumarin-6 in 5% alcohol and Tx-C6. 

The free coumarin-6 control showed minimal dye being internalized (Figure 3.1a), however, 

the Tx-C6 emulsion showed accumulation of coumarin-6 inside hyphae (Figure 3.1b).  This was 

expected since the activity of Itraconazole emulsified in 0.03% Tx-100 (Tx-ITZ) observed in a  

previous antifungal study (Chapter 2, section 2.3.3) showed an inhibitory effect similar to that of 

PLGA NPs with entrapped Itraconazole at high concentrations.  

In comparison, small nanoparticles, measuring an average of 203nm were internalized 

immediately and effectively when dropped onto pre-grown hyphae (Figure 3.2).  Small fluorescent 



www.manaraa.com

48 

 

spherical vesicles were observed inside the hyphae, indicating the presence of PLGA-C6 NPs inside 

the cells. 

In order to understand if the particle uptake was affected  by different growth stages, 203 nm 

nanoparticles were incubated with A.flavus spores and observed over time at 0, 1, 12, and 24 hours 

(Figure 3.3).  At 0 hours (immediately after application), photos showed small fluorescent 

nanoparticles in the vicinity of the spores, however no interaction or uptake was observed (Figure 

3.3a).  This changed as incubation time increased.  After 1 hour incubation particles began to 

associate with the spore surface, however, only surface association was seen and no internalization 

(Figure 3.3b).  As hyphae extension occurred at 12 hours, higher particle density was seen at cell 

surfaces and greater internalization was observed (Figure 3.3c).  Similarly at 24 hours, more 

coumarin-6 accumulated in the cells, seen by fluorescence extending to the cell’s septa (Figure 

3.3d).  Leaching and background of coumarin-6 from PLGA nanoparticles was not observed, 

supporting the fact that dye accumulation inside hyphae was a result of nanoparticle uptake.   

Uptake of larger PLGA-C6 nanoparticles of 1206 nm was studied to see if internalization was size 

dependent.  Upon adding the large particles onto grown hyphae, accumulation of coumarin-6 inside 

the hyphae was still apparent (Figure 3.4a); however, the phenomenon was sporadic.  Figure 3.4b 

showed that at a different photographed section of the same sample, while particle uptake was 

observed, the fluorescent intensity was lower than that observed with smaller nanoparticles (Figure 

3.3).  During incubation at 1 hour, a similar association of the particle to spore surface was still 

present (Figure 3.5a).  After 12 and 24 hour incubation, an increased accumulation of particles on 

cell surfaces and internalization of coumarin-6 was observed (Figure 3.5b and 3.5c).  At 12 hours 

especially, some extremely large particles were seen localized at the hyphae surface, signifying that 

while there is an upper limit of particle size where internalization may decrease, the localizing 
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effect of the nanoparticles on the hyphae surface could aid in transporting coumarin-6 into cells.  

After 24 hours incubation, dye accumulation inside the hyphae was observed as well (Figure 3.5c); 

however this event was again sporadic, similar to what was seen in Figure 3.4 (Figure 3.5d).  

Obviously, size was a determinant factor which dictated interaction of nanoparticles with the fungal 

cells. Regardless of size, however it was evident that a physical interaction between the particles 

and fungal cells occurred and factors other than size were also involved in this event. 

3.3.3  Size Impact on Antifungal Activity of PLGA-ITZ NPs on GFP Expressing A.flavus 

 While large particles (1206 nm) were internalized differently than smaller particles (203 nm) 

as shown in the uptake studies, it was necessary to investigate the impact of PLGA-ITZ 

nanoparticle uptake on antifungal activity.  To determine the effect of nanoparticle size on 

antifungal activity, welled plates were inoculated with GFP expressing Aspergillus flavus and 

subjected to five treatments (Water-ITZ, TX-ITZ, and PLGA-ITZ NPs of 232 nm, 630 nm, and 

1060 nm).  ITZ concentrations of 0.3, 0.03, 0.003 mg/ml were tested for all treatments.  Results 

were compared against a control (no treatment) and blank NPs.  Plates were treated immediately 

after inoculation with A.flavus and 12 hours after incubation to investigate treatment effect at 

different growth periods.  Biomass was directly proportional to fluorescence and quenching of 

fluorescence was indicative of inhibition. Statistical differences are shown in the appendix 

(Appendix B-Tables B1 to B6). 

3.3.3.1  Antifungal Activity of Treatments Immediately After A.flavus Inoculation` 

 In general, water-ITZ showed minimal inhibition, while Tx-ITZ had a better inhibitory 

activity (Figure 3.6).  In comparison, 232 nm, 630 nm, and 1060 nm particles showed superior 

antifungal activity compared to free ITZ formulations with no significant difference being observed 

between the sizes at high ITZ concentrations. 



www.manaraa.com

50 

 

 

  

 

Figure 3.1:  Fluorescent pictures of (a) free coumarin-6 at 0.3 mg/ml in 5% alcohol, and (b) 0.3% Tx-100 and coumarin-6 

emulsion at 0.3 mg/ml.  1 µl pipetted onto A.flavus grown for 24 hours and photographed immediately at 100x magnification.  

From left to right, photos shown as differential interference contrast (DIC), fluorescence, and DIC and fluorescence overlay. 

 

 

(a) 

(b) 
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Figure 3.2:  Fluorescent pictures of 203 nm PLGA-coumarin-6 NPs at 0.3 mg/ml of dye were added to 24 hour grown A.flavus 

hyphae.  1 µl of nanoparticle suspension pipetted onto A.flavus and photographed immediately at 100x magnification.  From 

left to right, photos shown as differential interference contrast (DIC), fluorescence, and DIC and fluorescence overlay.   

 

 

Figure 3.3a:  Fluorescent pictures of 203 nm PLGA-coumarin-6 NPs at 0.3 mg/ml of dye and A.flavus spores incubated at (a) 0 

hours, (b) 1 hour, (c) 12 hours, and (d) 24 hours at 37°C hours at 37°C.  1 µl pipetted onto microscope slide and taken at 100x 

magnification.  From left to right, photos shown as differential interference contrast (DIC), fluorescence, and DIC and 

fluorescence overlay. 

(a) 
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Figure 3.3b:  Fluorescent pictures of 203 nm PLGA-coumarin-6 NPs and A.flavus spores incubated 1 hour at 37°C.  From left 

to right, photos shown as differential interference contrast (DIC), fluorescence, and DIC and fluorescence overlay. 

   

Figure 3.3c:  Fluorescent pictures of 203 nm PLGA-coumarin-6 NPs and A.flavus spores incubated 12 hours at 37°C.  From 

left to right, photos shown as differential interference contrast (DIC), fluorescence, and DIC and fluorescence overlay. 

(b) 

(c) 
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Figure 3.3d:  Fluorescent pictures of 203 nm PLGA-coumarin-6 NPs and A.flavus spores incubated 24 hours at 37°C.  From 

left to right, photos shown as differential interference contrast (DIC), fluorescence, and DIC and fluorescence overlay. 

 

  

Figure 3.4a:  Fluorescent pictures of 1206 nm PLGA-coumarin-6 NPs at 0.3 mg/ml of dye added to 24 hour grown A.flavus. 1 

µl of nanoparticle suspension pipetted onto A.flavus and photographed immediately at 100x magnification.   Pictures shown 

represent two different photographed locations of sample; (a) location 1, and (b) location 2.  From left to right, photos shown 

as differential interference contrast (DIC), fluorescence, and DIC and fluorescence overlay. 

(d) 

(a) 
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Figure 3.4b:  Fluorescent pictures of location 2 of 1206 nm PLGA-coumarin-6 NPs added to 24 hour grown A.flavus.  From 

left to right, photos shown as differential interference contrast (DIC), fluorescence, and DIC and fluorescence overlay. 

 

 

Figure 3.5a:  Fluorescent pictures of 1206 nm PLGA-coumarin-6 NPs at 0.3 mg/ml of dye and A.flavus spores incubated at (a) 

1 hour, (b) 12 hours, (c) 24 hours, and (d) location 2 of 24 hours at 37°C.  1 µl pipetted onto microscope slide and taken at 100x 

magnification.  From left to right, photos shown as differential interference contrast (DIC), fluorescence, and DIC and 

fluorescence overlay. 
  

 

(a) 

(b) 
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Figure 3.5b:  Fluorescent pictures of 1206 nm PLGA-coumarin-6 NPs and A.flavus spores incubated at 12 hours.  From left to 

right, photos shown as differential interference contrast (DIC), fluorescence, and DIC and fluorescence overlay. 
 

 

Figure 3.5c:  Fluorescent pictures of 1206 nm PLGA-coumarin-6 NPs and A.flavus spores incubated at 24 hours.  From left to 

right, photos shown as differential interference contrast (DIC), fluorescence, and DIC and fluorescence overlay. 

 

 

 

 

 

 

(b) 

(c) 
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Figure 3.5d:  Fluorescent pictures of location 2 of 1206 nm PLGA-coumarin-6 NPs and A.flavus spores incubated at 24 hours.  

From left to right, photos shown as differential interference contrast (DIC), fluorescence, and DIC and fluorescence overlay. 

 

 

 

 

 

 

 

 

 

 

(d) 



www.manaraa.com

57 

 

 At the lowest ITZ concentration of 0.003 mg/ml, minimal inhibition was observed 

(Figure 3.6a) with all treatments.  Blank NPs of 232 nm, 630 and 1060 nm showed no significant 

inhibitory activity and followed trends similar to those of the control.  Similarly, water-ITZ 

showed very low inhibitory activity and even exceeded fluorescence levels of the control, while 

Tx-ITZ showed greater inhibition during days 2 and 3, or 37% and 47%, relative to the control.  

PLGA-ITZ NPs measuring 232 nm had the greatest inhibitory effect on day 2 (81% inhibition); 

however the effect was limited as seen by an increase in fluorescence to 350 units on day 3, 

before declining on day 4.  PLGA-ITZ NPs of 630 nm and 1060 nm, showed a similar inhibitory 

effect of 80% on day 2, however following day 2, fluorescence values remained above the 

control and gradually declined in the latter, following similar trends.  Compared to 232 nm 

particles, the decline in fluorescence units occurring with larger particles from day 3 through day 

11 was a more gradual process.  This was the most significant difference observed between large 

and small particles, and was not observed at the other ITZ concentrations (Appendix B-Table 

B1). 

 At 0.03 mg/ml, water-ITZ showed some inhibitory effect on day 2 at 67% relative to the 

control, but fluorescence increased on day 3 and stayed at levels above the control in the 

following days (Figure 3.6b).  Tx-ITZ showed significant inhibition maintaining fluorescence 

below 100 units through day 4.  However, a spike in fluorescence was seen on days 7 and 8 to 

230 and 250 fluorescence units, respectively, before declining from the accumulation of waste-

by product.  Both mid-sized and large PLGA-ITZ NPs showed considerable inhibitory activity 

throughout the eleven day study.  1060 nm particles did show a slight increase in fluorescence 

units towards the end of the study; however levels did not exceed 100 fluorescence units.  

Compared to 232 nm particles, no significant difference was seen between the nanoparticle sizes 

(Appendix B-Table B2). 
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 At the highest ITZ concentration of 0.3 mg/ml, water-ITZ showed an increase in 

inhibition which was best seen on day 2 by fluorescence levels of 155 units, or 76% relative to 

the control (Figure 3.6c).  This effect was again limited and on day 3 fluorescence levels 

increased above the control.  Tx-ITZ had a greater inhibitory effect with fluorescence values no 

higher than 60 units through day 4; however fluorescence again spiked on day 8 at 

approximately 200 units, similar to the phenomenon seen at 0.03 mg/ml ITZ.  In contrast, 

PLGA-ITZ NPs showed a consistent inhibitory effect across the study at fluorescence values 

near zero, irrespective of size (Appendix B-Table B3). 

 

Figure 3.6a:  GFP expressing A.flavus at 5x10
5
 spores/ml, incubated at 37ºC with glucose 

salts media and treated immediately after inoculation.  Fluorescence comparison of ITZ in 

water, Tx-100 ITZ emulsion, and 230 nm, 630 nm, and 1060 nm polylactic-co-glycolic acid 

nanoparticles with entrapped ITZ at 0.003 mg/ml ITZ (n=3 wells). 

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10

F
lu

o
re

sc
e

n
ce

 U
n

it
s

Time (Days)

GFP A.flavus Water-ITZ (0.003)

Tx-ITZ (0.003) Blank NPs-232 nm

Blanks NPs-630 nm Blank NPs-1060 nm

PLGA-ITZ (0.003)-232 nm PLGA-ITZ NPs (0.003)-630 nm

PLGA-ITZ NPs (0.003)-1060 nm

(a) 



www.manaraa.com

59 

 

 

Figure 3.6b:  Fluorescence comparison of ITZ in water, Tx-100 ITZ emulsion, and 230 nm, 

630 nm, and 1060 nm polylactic-co-glycolic acid nanoparticles with entrapped ITZ at 0.03 

mg/ml ITZ (n=3 wells). 

 

 

Figure 3.6c:  Fluorescence comparison of ITZ in water, Tx-100 ITZ emulsion, and 230 nm, 

630 nm, and 1060 nm polylactic-co-glycolic acid nanoparticles with entrapped ITZ at 0.3 

mg/ml ITZ (n=3 wells). 
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3.3.3.2 Antifungal Activity of Treatments 12 hours After A.flavus Inoculation 

A.flavus was incubated in 96 well plates for 12 hours and then treated to evaluate the 

antifungal activity after spore germination (Figure 3.7).  Water-ITZ again showed minimal 

inhibition, while Tx-ITZ had substantial antifungal activity.  However, PLGA-ITZ NPs 

maintained a consistent antifungal ability at concentrations of 0.3 and 0.03 mg/ml ITZ at all 

sizes.  The most notable difference in inhibitory activity between the different sized particles 

occurred at 0.003 mg/ml ITZ, similar to what was seen when treated immediately following 

inoculation. 

 Water-ITZ at 0.003 mg/ml ITZ showed no inhibitory effect and fluorescence followed 

similar trends to those of the control (Figure 3.7a).  In comparison, Tx-ITZ inhibited growth to a 

greater degree during the first three days seen by fluorescence levels of 96, 492, and 306 units, or 

71%, 26%, and 20% inhibition, respectively.  Decreasing fluorescence was then subsequently 

seen from the accumulation of waste by-products.  Compared to Tx-ITZ, 630 nm and 1060 nm 

PLGA-ITZ NPs did not show a major effect during the first four days.  Leading up to day 2 both 

particle sizes showed similar activity with a maximum inhibition of only 12% on day 2.  

Although, in the later days, the 630 nm particle fluorescence was seen declining rapidly 

compared to Tx-ITZ, whereas 1060 nm particle fluorescence was seen declining much more 

gradually indicated by fluorescence values as high as 240 units on day 7 compared to 30 units of 

the control.  Largely, 232 nm particles showed a greater inhibitory effect which was seen best 

during the first 3 days (Appendix B-Table B4). 

 At 0.03 mg/ml ITZ, water-ITZ showed limited inhibition initially on days 2 and 3 of 46% 

and 21% relative to the control before declining (Figure 3.7b).  Conversely, Tx-ITZ 

demonstrated significant inhibition seen by fluorescence below 100 units across the study.  Both 

sizes of 630 nm and 1060 nm PLGA-ITZ NPs showed a strong inhibitory effect during the first 
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four days seen by near zero fluorescence (Appendix B-Table B5).  While slight increases were 

observed towards the end, fluorescence no higher than 60 units was seen in all cases.   

 At 0.3 mg/ml ITZ, water-ITZ showed an increase in inhibitory action; however this was 

nominal (Figure 3.7c).  On days 1 and 2 fluorescence was recorded at 125 and 525 units, 

equivalent to 62% and 26% inhibition.  Tx-ITZ had significant impact, seen by low fluorescence 

levels of approximately 20 units consistently throughout the study.  Although, PLGA-ITZ NPs 

maintained fluorescence values near zero over the span of the study, regardless of size 

(Appendix B-Table B6). 

 Similar to 232 nm sized particles, mid-range and larger nanoparticles showed an 

enhanced inhibitory effect when A.flavus was treated immediately and 12 hours after inoculation.  

The most noticeable differences between 630 nm and 1060 nm particles were seen at the lowest 

ITZ concentration (0.003 mg/ml ITZ) especially in the latter parts of the study, where 

fluorescence declined much more slowly with larger particles.  At the higher ITZ concentration 

(0.03 mg/ml ITZ), increases in fluorescence were also found with larger nanoparticles, however 

they were very minimal.  The sporadic uptake of ~1000nm nanoparticles seen in Figures 3.4 and 

3.5 correlated well with the diminished antifungal activity seen at these sizes at 0.003 mg/ml 

ITZ, and confirmed that an inverse correlation of size with delivery efficiency existed.  

3.4  Discussion 

 Hyphae exposed to 0.3 mg/ml free dye in 5% alcohol showed minimal dye being 

internalized (Figure 3.1a).  Since coumarin-6 is hydrophobic, some crystallized coumarin-6 

could still be seen. In comparison, the emulsion of coumarin-6 (Tx-C6) showed visible 

accumulation of the dye inside hyphae (Figure 3.1b).  This would be expected since the emulsion 

should facilitate dye entry into the cells.  When 203 nm PLGA-C6 nanoparticles were added to 

pre-grown hyphae, particle uptake was also observed (Figure 3.2).  The small fluorescent     
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Figure 3.7a:  GFP expressing A.flavus at 5x10
5
 spores/ml, incubated at 37ºC with glucose 

salts media and treated 12 hours after inoculation.  Fluorescence comparison of ITZ in 

water, Tx-100 ITZ emulsion, and 230 nm, 630 nm, and 1060 nm polylactic-co-glycolic acid 

nanoparticles with entrapped ITZ at 0.003 mg/ml (n=3 wells). 
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Figure 3.7b:  Fluorescence comparison of ITZ in water, Tx-100 ITZ emulsion, and 230 nm, 

630 nm, and 1060 nm polylactic-co-glycolic acid nanoparticles with entrapped ITZ at 0.03 

mg/ml ITZ (n=3 wells). 

 

 

Figure 3.7c:  Fluorescence comparison of ITZ in water, Tx-100 ITZ emulsion, and 230 nm, 

630 nm, and 1060 nm polylactic-co-glycolic acid nanoparticles with entrapped ITZ at 0.3 

mg/ml ITZ (n=3 wells). 

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10

F
lu

o
re

sc
en

ce
 U

n
it

s

Time (Days)

GFP A.flavus Water-ITZ (0.03)

Tx-ITZ (0.03) PLGA-ITZ NPs (0.03)-232 nm

PLGA-ITZ NPs (0.03)-630 nm PLGA-ITZ NPs (0.03)-1060 nm

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10

F
lu

o
re

sc
e

n
ce

 U
n

it
s

Time (Days)

GFP A.flavus Water-ITZ (0.3)

Tx-ITZ (0.3) PLGA-ITZ NPs (0.3)-232 nm

PLGA-ITZ NPs (0.3)-630nm PLGA-ITZ NPs (0.3)-1060 nm

(c) 

(b) 



www.manaraa.com

64 

 

vesicles that were seen in the hyphae were believed to be from endosomes which formed once 

the particles were internalized [34-35].  Coumarin-6 was entrapped in the particle core and no 

dye leaching or background was observed, indicating that the fluorescence seen inside the 

hyphae was a result of the PLGA nanoparticles uptake.  In addition, the time frame from when 

the NPs were aliquoted onto the hyphae and photographed was within 2 to 3 minutes, supporting 

that particle uptake by A.flavus was a swift event.   

In order to verify if the observed processes were dependent upon the growth stage, 

PLGA-C6 NPs and A.flavus spores were incubated for different times (Figure 3.3).  At 0 hours, 

definitive fluorescent NPs could be seen in the vicinity of the spore, however no activity or dye 

accumulation was observed (Figure 3.3a).  Upon incubation of 1 hour (Figure 3.3b), a physical 

surface interaction occurred between PGLA-C6 NPs and the spore, and after 12 and 24 hours 

incubation (Figure 3.3c and 3.3d), hyphae growth became visible along with higher particle 

density at cell surfaces as well as particle uptake.  The cell walls of A.flavus are predominantly 

composed of polysaccharides such as chitin and glucans, with chitin representing a majority of 

the cell wall composition [36-37].  Chitin is composed of β-1, 4 linked N-acetylglucosamine 

units and known to contain a strong positive charge.  The negative charge of the PLGA 

nanoparticles from the carboxylic groups provided for an electrostatic interaction between the 

fungal cells and nanoparticles, which was believed to result in the particles associating with the 

cell surface.  Also, the process of nanoparticle uptake was seen to be related to a vegetative state, 

explaining why at 0 hours (Figure 3.3a) no activity was seen and as nutrient consumption 

proceeded particles began attaching to the spore surface (Figure 3.3b). Subsequently, this 

association with the cell surface could expedite particle and dye entry into the cell, thus yielding 

a greater accumulation of dye in the hyphae over time.    
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The study of larger particle (1206 nm) uptake revealed that particle internalization was 

affected by size.  Once PLGA-C6 NPs were added onto the pre-grown hyphae, accumulation of 

coumarin-6 was still observed inside hyphae (Figure 3.4a), but the event was sporadic compared 

to 203 nm NPs.  The cell walls of A.flavus are also known to contain proteins that release 

hydrolytic enzymes such as phosphatases, amylases, and proteases that assist in transporting 

larger nutrients in smaller subunits capable of being utilized by the cell, explaining the observed 

dye accumulation in cells even at larger particle sizes [36, 38-39].  However, in a second 

photographed location of the same sample, while particle uptake was still observed, fluorescence 

intensity was visibly lower (Figure 3.4b).  This observed difference may be explained by particle 

density.  The fluorescence of 203 nm particles was much more uniformly spread among the 

sample showing more uniform particle uptake due to a higher NP:cell ratio, when compared to 

1206 nm NPs (Figure 3.4).  Even so, the particle localization that was still observed for bigger 

particles on the surface of the fungal cells could also facilitate access of enzymes to particle 

contents, expediting particle and dye internalization (Figures 3.5a and 3.5b).  The size effect on 

antifungal capability was then studied to see if a correlation could be made between the two 

studies.    

Compared to free ITZ formulations of water-ITZ and Tx-ITZ, PLGA-ITZ NPs of all sizes 

showed a superior antifungal effect.  After immediate treatment and 12 hours post inoculation, 

higher treatment concentrations of 0.3 and 0.03 mg/ml ITZ did not show any significant 

difference in antifungal activity between 232, 630, and 1060 nm PLGA-ITZ NPs (Figures 3.6b, 

3.6c and Figures 3.7b, 3.7c).  Predominantly flat fluorescence profiles were seen compared to 

Tx-ITZ which showed fluctuating fluorescence profiles.  This could be attributed to decreasing 

drug concentrations from degradation or consumption followed by flourishing of spores that 

have survived from the intense conditions.  Fungal cells also contain active transport 
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mechanisms to counter exogenous toxicants such as fungicides and remove them [40].  This 

could also indicate that the particles were mistaken as a food source, endocytosed, and as a result 

showed improved antifungal ability.  The most notable difference in antifungal activity of 

PLGA-ITZ NPs occurred at 0.003 mg/ml ITZ, seen by a much more gradual decline in 

fluorescence with 630 and 1060 nm NPs after day 3 compared to smaller sized NPs (Figure 3.6a 

and Figure 3.7a), possibly due to lower uptake of larger particles (Figures 3.4 and 3.5).  At 

higher ITZ concentrations of 0.3 mg/ml and 0.03 mg/ml, PLGA-ITZ NPs provided a significant 

enough drug concentration to inhibit growth to the point where no differences were observed in 

the antifungal effect of nanoparticles of different sizes, while at the lowest ITZ concentration the 

diminished antifungal ability of larger nanoparticles resulting from the lower particle uptake 

becomes more apparent.  The decreased antifungal effect of larger versus smaller nanoparticles 

could also be a product of a slower drug release from larger nanoparticles due to their smaller 

surface to volume ratio [41-44].  Some excessively large particles, such as those seen in Figure 

3.5b, that are near the cell surface may slowly release ITZ resulting in a limited antifungal effect, 

whereas 232 nm particles release ITZ faster yielding a flat fluorescence profile over the span of 

the study.   

Results indicated that PLGA nanoparticle uptake was affected, but not greatly by size in 

the 200-1000 nm range, and larger particle sizes were correlated with lower drug delivery 

efficiency at lower ITZ concentrations as indicated in antifungal studies.   

3.5  Conclusions 

 In an attempt to uncover a mechanism of action regarding fungal cells and PLGA-ITZ NP 

antifungal activity, different sized nanoparticles were tested for particle uptake and antifungal 

capability.  Results revealed that PLGA-C6 nanoparticle uptake at 200 nm was more apparent 

than 1206 nm.  The observed difference was confirmed in GFP quantitative studies.  Whereas 
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200 nm particles showed consistent inhibitory activity across all concentrations compared to free 

ITZ, larger particles showed weakened antifungal ability at the lowest ITZ concentration of 

0.003 mg/ml.  NP internalization and cell association seen in the fluorescent studies have been 

determined as contributing mechanisms of the enhanced antifungal effect of PLGA-ITZ NPs 

versus free ITZ.  While results suggest that other additional mechanisms may also play a role in 

facilitating ITZ penetration into fungal cells, particle size has proven to be a crucial parameter 

for drug delivery efficiency.  

3.6  Future Perspectives 

 Finding more potent, less harmful and affordable treatments options is an ongoing effort 

in medicine today.  PLGA nanoparticles have shown to be a valuable and highly effective tool in 

delivery of a wide variety of bioactive agents, and their applications are consistently expanding.  

This manuscript has determined that PLGA-ITZ nanoparticles provide for a strong alternative to 

traditional means of antifungal therapy.  The observed activity of PLGA-ITZ NPs has been 

determined to be linked to nanoparticle uptake by fungal cells and physical association with cell 

membranes.  In general, nanoparticle size showed to be a critical factor that affected nanoparticle 

uptake and the antifungal efficacy.  This study has provided an opportunity to narrow down a 

mechanism of action of polymeric antifungal nanoparticles.  Additional studies focused on 

release rates of ITZ from different particle sizes and compositions, and nanoparticle interaction 

with various fungal species at different growth rates are envisioned to provide a more detailed 

explanation of the enhanced antimicrobial effect observed with antifungal entrapped polymeric 

nanoparticles.         
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Chapter 4. Conclusions 

 PLGA nanoparticles as a delivery system for the antifungal drug Itraconazole have 

proven to be a potent alternative compared to the conventional free or emulsified forms of.  

Results showed that Itraconazole may provide a steady drug dose for five days and inhibit fungal 

growth beyond the application point when applied to an inoculated surface, as observed in 

culture studies.  Quantitative inhibitory studies showed an equivalent antifungal effect at 100x 

less Itraconazole when entrapped in PLGA nanoparticles compared to free Itraconazole 

formulations.  These characteristics can be of great benefit in addressing certain issues with 

traditional drug forms such as fluctuating drug levels in the blood stream, toxicity from high 

dosages and excessive related costs.  It was determined that smaller PLGA-ITZ NPs compared to 

larger particles were able to penetrate A.flavus cells more efficiently, resulting in a superior 

antifungal effect, especially at lower drug concentrations.  A definite mechanism of action has 

not be determined, however the current study has provided great insight that links the observed 

superior antifungal activity of the entrapped ITZ with the ability of PLGA nanoparticles to be 

efficiently uptaken by fungal cells. Other studies are required to fully investigate and understand 

the mechanism of action and factors involved in the observed activity of PLGA-ITZ NPs.  
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Appendix A 

Table S1:  Least square means of fluorescence unit natural log (FULN) at 0.003 mg/ml 
Itraconazole (ITZ) concentration treated immediately after inoculation (0 h).  

Treatment1 Day FULN SE2 Letter group3 

Blank_NPs 1 4.2784 0.1309 J 

Blank_NPs 2 6.1507 0.1309 BC 

Blank_NPs 3 6.2835 0.1309 AB 

Blank_NPs 4 5.6971 0.1309 DEF 

PLGA-ITZ NPs 1 3.4545 0.1309 K 

PLGA-ITZ NPs 2 4.8051 0.1309 I 

PLGA-ITZ NPs 3 5.8597 0.1309 CDE 

PLGA-ITZ NPs 4 5.6438 0.1309 EFG 

Tx_ITZ 1 4.0504 0.1309 J 

Tx_ITZ 2 5.1505 0.1309 HI 

Tx_ITZ 3 5.8545 0.1309 CDE 

Tx_ITZ 4 5.3927 0.1309 FGH 

W_ITZ 1 4.1878 0.1309 J 

W_ITZ 2 6.3845 0.1309 AB 

W_ITZ 3 6.0260 0.1309 BCD 

W_ITZ 4 5.2757 0.1309 GH 

control 1 4.3301 0.1309 J 

control 2 6.6333 0.1309 A 

control 3 6.2766 0.1309 AB 

control 4 5.3333 0.1309 FGH 
1Treatment: Blank_NPs = blank nanoparticles; PLGA-ITZ NPs = polylactic-co-glycolic acid nanoparticles with 

Itraconazole; Tx_ITZ = Itraconazole emulsion in Triton X-100; W_ITZ = Itraconazole in water; control = A.flavus 
alone. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P < 0.0001) was observed using Tukey 
post-hoc multiple comparison adjustment.   
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Table S2: Least square means of fluorescence unit natural log (FULN) at 0.03 mg/ml 
Itraconazole (ITZ)  concentration treated immediately after inoculation (0 h).  

Treatment1 Day FULN SE2 Letter group3 

Blank_NPs 1 4.2784 0.1834 DEF 

Blank_NPs 2 6.1507 0.1834 ABC 

Blank_NPs 3 6.2835 0.1834 AB 

Blank_NPs 4 5.6971 0.1834 ABC 

PLGA-ITZ NPs 1 0.4621 0.1834 G 

PLGA-ITZ NPs 2 0.2310 0.1834 G 

PLGA-ITZ NPs 3 0.2310 0.1834 G 

PLGA-ITZ NPs 4 0.2310 0.1834 G 

Tx_ITZ 1 3.7926 0.1834 F 

Tx_ITZ 2 4.2420 0.1834 EF 

Tx_ITZ 3 5.2192 0.1834 CD 

Tx_ITZ 4 5.1587 0.1834 CDE 

W_ITZ 1 3.9949 0.1834 F 

W_ITZ 2 6.2997 0.1834 AB 

W_ITZ 3 6.1562 0.1834 ABC 

W_ITZ 4 5.7026 0.1834 ABC 

control 1 4.3301 0.1834 DEF 

control 2 6.6333 0.1834 A 

control 3 6.2766 0.1834 A 

control 4 5.3333 0.1834 BC 
1Treatment: Blank_NPs = blank nanoparticles; PLGA-ITZ NPs = polylactic-co-glycolic acid nanoparticles with 

Itraconazole; Tx_ITZ = Itraconazole emulsion in Triton X-100; W_ITZ = Itraconazole in water; control = A.flavus. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P < 0.0001) was observed using Tukey 
post-hoc multiple comparison adjustment.   
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Table S3: Least square means of fluorescence unit natural log (FULN) at 0.3 mg/ml Itraconazole 
(ITZ) concentration treated immediately after inoculation (0 h).  

Treatment1 Day FULN SE2 Letter group3 

Blank_NPs 1 4.2784 0.3579 CDE 

Blank_NPs 2 6.1507 0.3579 AB 

Blank_NPs 3 6.2835 0.3579 AB 

Blank_NPs 4 5.6971 0.3579 ABC 

PLGA-ITZ NPs 1 2.11E-15 0.3579 F 

PLGA-ITZ NPs 2 0.2310 0.3579 F 

PLGA-ITZ NPs 3 0.3662 0.3579 F 

PLGA-ITZ NPs 4 0.9986 0.3579 F 

Tx_ITZ 1 3.6919 0.3579 DE 

Tx_ITZ 2 3.7559 0.3579 CDE 

Tx_ITZ 3 3.8203 0.3579 CDE 

Tx_ITZ 4 5.1582 0.3579 ABCDE 

W_ITZ 1 3.6107 0.3579 E 

W_ITZ 2 5.5047 0.3579 ABCD 

W_ITZ 3 6.7174 0.3579 A 

W_ITZ 4 6.3728 0.3579 A 

control 1 4.3301 0.3579 BCDE 

control 2 6.6333 0.3579 A 

control 3 6.2766 0.3579 A 

control 4 5.3333 0.3579 ABCDE 
1Treatment: Blank_NPs = blank nanoparticles; PLGA-ITZ NPs = polylactic-co-glycolic acid nanoparticles with 

Itraconazole; Tx_ITZ = Itraconazole emulsion in Triton X-100; W_ITZ = Itraconazole in water; control = A.flavus. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P = 0.0002) was observed using Tukey 
post-hoc multiple comparison adjustment.   
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Table S4:  Least square means of fluorescence unit natural log (FULN) at 0.003 mg/ml 
Itraconazole (ITZ) concentration treated 12 h after inoculation (12 h).  

Treatment1 Day FULN SE2 Letter group3 

Blank_NPs 0 2.7296 0.2314 MN 

Blank_NPs 1 5.6453 0.2314 CDEF 

Blank_NPs 2 5.9359 0.2314 BCD 

Blank_NPs 3 5.4603 0.2314 CDEFGH 

Blank_NPs 4 4.9754 0.2314 GHI 

PLGA-ITZ NPs 0 2.7511 0.2314 MN 

PLGA-ITZ NPs 1 3.6314 0.2314 KL 

PLGA-ITZ NPs 2 3.3037 0.2314 LM 

PLGA-ITZ NPs 3 4.8163 0.2314 HIJ 

PLGA-ITZ NPs 4 5.0841 0.2314 FGHI 

Tx_ITZ 0 2.7066 0.2314 MN 

Tx_ITZ 1 4.1643 0.2314 JK 

Tx_ITZ 2 4.6073 0.2314 IJ 

Tx_ITZ 3 5.8694 0.2314 BCDE 

Tx_ITZ 4 6.9556 0.2314 A 

W_ITZ 0 2.6374 0.2314 N 

W_ITZ 1 5.0174 0.2314 FGHI 

W_ITZ 2 6.0616 0.2314 BC 

W_ITZ 3 5.6429 0.2314 CDEF 

W_ITZ 4 5.2977 0.2314 DEFGH 

control 0 2.4508 0.2314 N 

control 1 5.5647 0.2314 CDEFG 

control 2 6.4132 0.2314 AB 

control 3 5.7689 0.2314 BCDE 

control 4 5.2321 0.2314 EFGHI 
1Treatment: Blank_NPs = blank nanoparticles; PLGA-ITZ NPs = polylactic-co-glycolic acid nanoparticles with 

Itraconazole; Tx_ITZ = Itraconazole emulsion in Triton X-100; W_ITZ = Itraconazole in water; control = A.flavus. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P < 0.0001) was observed using Tukey 
post-hoc multiple comparison adjustment.   
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Table S5:  Least square means of fluorescence unit natural log (FULN) at 0.03 mg/ml 
Itraconazole (ITZ) concentration treated 12 h after inoculation (12 h).  

Treatment1 Day FULN SE2 Letter group3 

Blank_NPs 0 2.7296 0.4126 DEFGH 

Blank_NPs 1 5.6453 0.4126 ABC 

Blank_NPs 2 5.9359 0.4126 AB 

Blank_NPs 3 5.4603 0.4126 ABC 

Blank_NPs 4 4.9754 0.4126 ABCD 

PLGA-ITZ NPs 0 2.7066 0.4126 EFGH 

PLGA-ITZ NPs 1 0.2310 0.4126 I 

PLGA-ITZ NPs 2 0.6931 0.4126 HI 

PLGA-ITZ NPs 3 1.1552 0.4126 HI 

PLGA-ITZ NPs 4 1.8783 0.4126 GHI 

Tx_ITZ 0 2.6819 0.4126 EFGH 

Tx_ITZ 1 4.0669 0.4126 BCDEFG 

Tx_ITZ 2 3.4904 0.4126 CDEFG 

Tx_ITZ 3 4.1698 0.4126 ABCDEF 

Tx_ITZ 4 6.0189 0.4126 AB 

W_ITZ 0 2.5817 0.4126 FGH 

W_ITZ 1 4.8697 0.4126 ABCDE 

W_ITZ 2 6.0405 0.4126 AB 

W_ITZ 3 6.0070 0.4126 AB 

W_ITZ 4 5.8715 0.4126 AB 

control 0 2.4508 0.4126 FGHI 

control 1 5.5647 0.4126 ABC 

control 2 6.4132 0.4126 A 

control 3 5.7689 0.4126 AB 

control 4 5.2321 0.4126 ABC 
1Treatment: Blank_NPs = blank nanoparticles; PLGA-ITZ NPs = polylactic-co-glycolic acid nanoparticles with 

Itraconazole; Tx_ITZ = Itraconazole emulsion in Triton X-100; W_ITZ = Itraconazole in water; control = A.flavus. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P < 0.0001) was observed using Tukey 
post-hoc multiple comparison adjustment.   
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Table S6:  Least square means of fluorescence unit natural log (FULN) at 0.3 mg/ml 
Itraconazole (ITZ) concentration treated 12 h after inoculation (12 h).  

Treatment1 Day FULN SE2 Letter group3 

Blank_NPs 0 2.7296 0.1891 DEF 

Blank_NPs 1 5.6453 0.1891 ABC 

Blank_NPs 2 5.9359 0.1891 AB 

Blank_NPs 3 5.4603 0.1891 ABC 

Blank_NPs 4 4.9754 0.1891 C 

PLGA-ITZ NPs 0 2.7066 0.1891 DEF 

PLGA-ITZ NPs 1 -244E-17 0.1891 H 

PLGA-ITZ NPs 2 -244E-17 0.1891 H 

PLGA-ITZ NPs 3 -211E-17 0.1891 H 

PLGA-ITZ NPs 4 0.2310 0.1891 H 

Tx_ITZ 0 2.6107 0.1891 EG 

Tx_ITZ 1 3.4399 0.1891 DF 

Tx_ITZ 2 2.9407 0.1891 DEF 

Tx_ITZ 3 2.7673 0.1891 DEF 

Tx_ITZ 4 2.6177 0.1891 EG 

W_ITZ 0 2.5383 0.1891 FG 

W_ITZ 1 3.6387 0.1891 DE 

W_ITZ 2 5.6166 0.1891 ABC 

W_ITZ 3 6.0206 0.1891 ABC 

W_ITZ 4 6.0253 0.1891 AB 

control 0 2.4508 0.1891 FG 

control 1 5.5647 0.1891 BC 

control 2 6.4132 0.1891 A 

control 3 5.7689 0.1891 ABC 

control 4 5.2321 0.1891 BC 
1Treatment: Blank_NPs = blank nanoparticles; PLGA_ITZ = polylactic-co-glycolic acid nanoparticles with 

Itraconazole; Tx_ITZ = Itraconazole emulsion in Triton X-100; W_ITZ = Itraconazole in water; control = A.flavus. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P < 0.0001) was observed using Tukey 
post-hoc multiple comparison adjustment. 
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Appendix B 

Table B1:  Least square means of fluorescence unit natural log (FULN) at 0.003 mg/ml 

Itraconazole (ITZ) concentration treated immediately after inoculation (0 h).

Treatment1 Day FULN SE2 Letter group3 

B10_0 0 0.3109 0.1816 P 

B10_0 1 4.7514 0.1816 HIJKMN 

B10_0 2 6.2880 0.1816 ABC 

B10_0 3 6.0111 0.1816 ABCDE 

B10_0 4 5.5581 0.1816 BCDEFG 

B2_0 0 -2.3026 0.1641 Q 

B2_0 1 4.2798 0.1641 JKNO 

B2_0 2 6.1509 0.1641 ABC 

B2_0 3 6.2836 0.1641 AB 

B2_0 4 5.6974 0.1641 ABCDEFH 

B6_0 0 0.7419 0.1142 P 

B6_0 1 4.8183 0.1142 GIJKM 

B6_0 2 6.2145 0.1142 AB 

B6_0 3 5.8775 0.1142 ABCE 

B6_0 4 5.2001 0.1142 DFGHIL 

P10_0.003 0 0.5264 0.1230 P 

P10_0.003 1 3.9329 0.1230 NO 

P10_0.003 2 4.8487 0.1230 GIJKM 

P10_0.003 3 6.2454 0.1230 AB 

P10_0.003 4 6.0936 0.1230 ABC 

P2_0.003 0 0.09531 0.1348 P 

P2_0.003 1 3.4576 0.1348 O 

P2_0.003 2 4.8059 0.1348 GIJKM 

P2_0.003 3 5.8600 0.1348 ABCDE 

Treatment1 Day FULN SE2 Letter group3 

P2_0.003 4 5.6442 0.1348 BCDEFH 

P6_0.003 0 -2.3026 0.2053 Q 

P6_0.003 1 4.0735 0.2053 KNO 

P6_0.003 2 5.0342 0.2053 EFGHIJL 

P6_0.003 3 6.1838 0.2053 ABC 

P6_0.003 4 6.1581 0.2053 ABCD 

T0.003 0 0.7419 0.08123 P 

T0.003 1 3.8008 0.08123 O 

T0.003 2 6.0475 0.08123 AB 

T0.003 3 5.5064 0.08123 CDEFH 

T0.003 4 4.6292 0.08123 IJK 

W0.003 0 -0.4884 0.5042 PQ 

W0.003 1 4.6191 0.5042 ABCDEFGHI

JKNO 

W0.003 2 6.2974 0.5042 ABCDEFGHI

JK 

W0.003 3 6.7052 0.5042 ABCDEFGHI 

W0.003 4 6.0810 0.5042 ABCDEFGHI

JK 

control 0 0.5264 0.1268 P 

control 1 4.7041 0.1268 GIJKM 

control 2 6.5038 0.1268 A 

control 3 6.1338 0.1268 AB 

control 4 4.9558 0.1268 FGHIJK 

1Treatment: B10_0, B6_0, B2_0= blank nanoparticles at 1060nm, 630nm, 230 nm; P_10, P_6, P_2= polylactic-co-
glycolic acid nanoparticles with Itraconazole at 1060nm, 630nm, 230nm.; T = Itraconazole emulsion in Triton X-

100; W = Itraconazole in water; control = A.flavus alone. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P < 0.0001) was observed using Tukey 
post-hoc multiple comparison adjustment.   
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Table B2: Least square means of fluorescence unit natural log (FULN) at 0.03 mg/ml 

Itraconazole (ITZ) concentration treated immediately after inoculation (0 h). 

Treatment1 Day FULN SE2 

Letter 

group3 

B10_0 0 0.3109 0.1816 LM 

B10_0 1 4.7514 0.1816 FHIJK 

B10_0 2 6.2880 0.1816 AB 

B10_0 3 6.0111 0.1816 ABCD 

B10_0 4 5.5581 0.1816 BCDEG 

B2_0 0 -2.3026 0.1641 N 

B2_0 1 4.2798 0.1641 HIJK 

B2_0 2 6.1509 0.1641 ABC 

B2_0 3 6.2836 0.1641 AB 

B2_0 4 5.6974 0.1641 ABCDEF 

B6_0 0 0.7419 0.1142 L 

B6_0 1 4.8183 0.1142 GHI 

B6_0 2 6.2145 0.1142 AB 

B6_0 3 5.8775 0.1142 ABC 

B6_0 4 5.2001 0.1142 DEFG 

P10_0.03 0 0.4407 0.4012 LM 

P10_0.03 1 0.7419 0.4012 LM 

P10_0.03 2 0.3109 0.4012 LM 

P10_0.03 3 0.09531 0.4012 LM 

P10_0.03 4 -1.5033 0.4012 MN 

P2_0.03 0 0.09531 0.1928 LM 

P2_0.03 1 0.5264 0.1928 L 

P2_0.03 2 0.3109 0.1928 LM 

Treatment1 Day FULN SE2 

Letter 

group3 

P2_0.03 3 0.3109 0.1928 LM 

P2_0.03 4 0.3109 0.1928 LM 

P6_0.03 0 0.7419 0.1351 L 

P6_0.03 1 0.7419 0.1351 L 

P6_0.03 2 0.6562 0.1351 L 

P6_0.03 3 0.7419 0.1351 L 

P6_0.03 4 0.09531 0.1351 LM 

T0.03 0 0.7419 0.2169 L 

T0.03 1 3.6129 0.2169 K 

T0.03 2 4.1415 0.2169 HIJK 

T0.03 3 3.6383 0.2169 K 

T0.03 4 3.7859 0.2169 JK 

W0.03 0 0.09531 0.1150 LM 

W0.03 1 4.2293 0.1150 IJK 

W0.03 2 5.3883 0.1150 CDEFG 

W0.03 3 6.1148 0.1150 ABC 

W0.03 4 5.6505 0.1150 BCDE 

control 0 0.5264 0.1268 L 

control 1 4.7041 0.1268 GHIJ 

control 2 6.5038 0.1268 A 

control 3 6.1338 0.1268 AB 

control 4 4.9558 0.1268 EFGH 

1Treatment: B10_0, B6_0, B2_0= blank nanoparticles at 1060nm, 630nm, 230 nm; P_10, P_6, P_2= polylactic-co-
glycolic acid nanoparticles with Itraconazole at 1060nm, 630nm, 230nm.; T = Itraconazole emulsion in Triton X-

100; W = Itraconazole in water; control = A.flavus alone. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P < 0.0001) was observed using Tukey 
post-hoc multiple comparison adjustment.   
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Table B3: Least square means of fluorescence unit natural log (FULN) at 0.3 mg/ml 
Itraconazole (ITZ) concentration treated immediately after inoculation (0 h). 

Treatment1 Day FULN SE2 

Letter 

group3 

B10_0 0 0.3109 0.1816 QR 

B10_0 1 4.7514 0.1816 FIJKL 

B10_0 2 6.2880 0.1816 AB 

B10_0 3 6.0111 0.1816 ABCD 

B10_0 4 5.5581 0.1816 BCDEG 

B2_0 0 -2.3026 0.1641 S 

B2_0 1 4.2798 0.1641 IJLM 

B2_0 2 6.1509 0.1641 AB 

B2_0 3 6.2836 0.1641 AB 

B2_0 4 5.6974 0.1641 ABCDEF 

B6_0 0 0.7419 0.1142 Q 

B6_0 1 4.8183 0.1142 GIJK 

B6_0 2 6.2145 0.1142 AB 

B6_0 3 5.8775 0.1142 ABD 

B6_0 4 5.2001 0.1142 CEFGH 

P10_0.3 0 0.3109 0.5146 QR 

P10_0.3 1 -0.7040 0.5146 QRS 

P10_0.3 2 0.09531 0.5146 QR 

P10_0.3 3 0.09531 0.5146 QR 

P10_0.3 4 -1.5033 0.5146 RS 

P2_0.3 0 -0.7040 0.4976 QRS 

P2_0.3 1 0.09531 0.4976 QR 

P2_0.3 2 0.3109 0.4976 QR 

Treatment1 Day FULN SE2 

Letter 

group3 

P2_0.3 3 0.4407 0.4976 QR 

P2_0.3 4 1.0499 0.4976 PQR 

P6_0.3 0 0.7419 0.4142 QR 

P6_0.3 1 0.7419 0.4142 QR 

P6_0.3 2 0.7419 0.4142 QR 

P6_0.3 3 0.7419 0.4142 QR 

P6_0.3 4 -0.4884 0.4142 QRS 

T0.3 0 0.5264 0.1163 QR 

T0.3 1 3.6400 0.1163 MN 

T0.3 2 4.0701 0.1163 LM 

T0.3 3 3.3229 0.1163 NO 

T0.3 4 2.7101 0.1163 OP 

W0.3 0 0.6562 0.2038 QR 

W0.3 1 3.9839 0.2038 JLMN 

W0.3 2 5.0377 0.2038 DEFGHI 

W0.3 3 6.4307 0.2038 AB 

W0.3 4 6.1501 0.2038 ABC 

control 0 0.5264 0.1268 QR 

control 1 4.7041 0.1268 GIJKL 

control 2 6.5038 0.1268 A 

control 3 6.1338 0.1268 AB 

control 4 4.9558 0.1268 EFGIJ 

1Treatment: B10_0, B6_0, B2_0= blank nanoparticles at 1060nm, 630nm, 230 nm; P_10, P_6, P_2= polylactic-co-
glycolic acid nanoparticles with Itraconazole at 1060nm, 630nm, 230nm.; T = Itraconazole emulsion in Triton X-

100; W = Itraconazole in water; control = A.flavus alone. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P < 0.0001) was observed using Tukey 
post-hoc multiple comparison adjustment.   
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Table B4:  Least square means of fluorescence unit natural log (FULN) at 0.003 mg/ml 

Itraconazole (ITZ) concentration treated 12 h after inoculation (12 h). 

Treatment1 Day FULN SE2 Letter group3 

B10_0 0 2.0479 0.06539 QR 

B10_0 1 5.8750 0.06539 CGK 

B10_0 2 6.5061 0.06539 AD 

B10_0 3 5.9227 0.06539 BCGK 

B10_0 4 4.5671 0.06539 M 

B2_0 0 2.7361 0.1814 PQ 

B2_0 1 5.6457 0.1814 BCFGHIJ 

B2_0 2 5.9362 0.1814 ABCGH 

B2_0 3 5.4607 0.1814 CGHIJ 

B2_0 4 4.9762 0.1814 IJMN 

B6_0 0 2.0919 0.1228 QR 

B6_0 1 5.9477 0.1228 BCDGK 

B6_0 2 6.2554 0.1228 ABCG 

B6_0 3 5.7144 0.1228 CGHI 

B6_0 4 4.3109 0.1228 M 

P10_0.003 0 2.0040 0.05207 QR 

P10_0.003 1 4.9207 0.05207 J 

P10_0.003 2 6.4115 0.05207 ADEF 

P10_0.003 3 6.4240 0.05207 ADE 

P10_0.003 4 6.0453 0.05207 BCG 

P2_0.003 0 0.09531 0.1348 S 

P2_0.003 1 3.4576 0.1348 OP 

P2_0.003 2 4.8059 0.1348 JM 

Treatment1 Day FULN SE2 Letter group3 

P2_0.003 3 5.8600 0.1348 BCEGIKL 

P2_0.003 4 5.6442 0.1348 CGHI 

P6_0.003 0 1.6292 0.09923 R 

P6_0.003 1 5.1000 0.09923 HJN 

P6_0.003 2 6.3717 0.09923 AB 

P6_0.003 3 5.9111 0.09923 BCGK 

P6_0.003 4 4.8691 0.09923 JM 

T0.003 0 2.1695 0.3535 PQR 

T0.003 1 4.5682 0.3535 HIJKMO 

T0.003 2 6.1884 0.3535 ABCGHIJ 

T0.003 3 5.7043 0.3535 ABCGHIJM 

T0.003 4 4.8362 0.3535 GHIJMO 

W0.003 0 2.0040 0.1476 QR 

W0.003 1 5.6480 0.1476 BCGHI 

W0.003 2 6.7396 0.1476 A 

W0.003 3 6.1478 0.1476 ABCG 

W0.003 4 5.0723 0.1476 HIJLM 

control 0 1.9601 0.1935 QR 

control 1 5.8063 0.1935 ABCGHI 

control 2 6.5530 0.1935 ABC 

control 3 5.8997 0.1935 ABCGHI 

control 4 4.5735 0.1935 JM 

1Treatment: B10_0, B6_0, B2_0= blank nanoparticles at 1060nm, 630nm, 230 nm; P_10, P_6, P_2= polylactic-co-
glycolic acid nanoparticles with Itraconazole at 1060nm, 630nm, 230nm.; T = Itraconazole emulsion in Triton X-

100; W = Itraconazole in water; control = A.flavus alone. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P < 0.0001) was observed using Tukey 
post-hoc multiple comparison adjustment.   
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Table B5:  Least square means of fluorescence unit natural log (FULN) at 0.03 mg/ml 
Itraconazole (ITZ) concentration treated 12 h after inoculation (12 h). 

 Treatment1 Day FULN SE2 Letter group3 

B10_0 0 2.0479 0.06539 LM 

B10_0 1 5.8750 0.06539 BC 

B10_0 2 6.5061 0.06539 A 

B10_0 3 5.9227 0.06539 BC 

B10_0 4 4.5671 0.06539 H 

B2_0 0 2.7361 0.1814 JKL 

B2_0 1 5.6457 0.1814 BCDEF 

B2_0 2 5.9362 0.1814 ABC 

B2_0 3 5.4607 0.1814 BCDEFG 

B2_0 4 4.9762 0.1814 DEFGH 

B6_0 0 2.0919 0.1228 LM 

B6_0 1 5.9477 0.1228 ABC 

B6_0 2 6.2554 0.1228 AB 

B6_0 3 5.7144 0.1228 BCDE 

B6_0 4 4.3109 0.1228 HI 

P10_0.03 0 2.0867 0.8292 GHIJKLMNO 

P10_0.03 1 0.5264 0.8292 JKLMNO 

P10_0.03 2 0.3109 0.8292 KLMNO 

P10_0.03 3 1.1062 0.8292 IJKLMNO 

P10_0.03 4 1.1152 0.8292 IJKLMNO 

P2_0.03 0 0.09531 0.1928 O 

P2_0.03 1 0.5264 0.1928 O 

P2_0.03 2 0.3109 0.1928 O 

 Treatment1 Day FULN SE2 Letter group3 

P2_0.03 3 0.3109 0.1928 O 

P2_0.03 4 0.3109 0.1928 O 

P6_0.03 0 2.2083 0.3182 KLMN 

P6_0.03 1 0.8718 0.3182 MNO 

P6_0.03 2 0.7419 0.3182 MNO 

P6_0.03 3 0.5264 0.3182 NO 

P6_0.03 4 0.7608 0.3182 MNO 

T0.03 0 2.1307 0.2944 LMN 

T0.03 1 4.4217 0.2944 EFGHI 

T0.03 2 3.9963 0.2944 HIJ 

T0.03 3 4.2735 0.2944 FGHI 

T0.03 4 3.8818 0.2944 HIJK 

W0.03 0 1.7486 0.1931 LMN 

W0.03 1 5.1841 0.1931 CDEFGH 

W0.03 2 6.3273 0.1931 AB 

W0.03 3 5.8856 0.1931 ABCD 

W0.03 4 5.1797 0.1931 CDEFGH 

control 0 1.9601 0.1935 LMN 

control 1 5.8063 0.1935 ABCDE 

control 2 6.5530 0.1935 AB 

control 3 5.8997 0.1935 ABCD 

control 4 4.5735 0.1935 FGHI 

1Treatment: B10_0, B6_0, B2_0= blank nanoparticles at 1060nm, 630nm, 230 nm; P_10, P_6, P_2= polylactic-co-
glycolic acid nanoparticles with Itraconazole at 1060nm, 630nm, 230nm.; T = Itraconazole emulsion in Triton X-

100; W = Itraconazole in water; control = A.flavus alone. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P < 0.0001) was observed using Tukey 
post-hoc multiple comparison adjustment.   
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Table B6:  Least square means of fluorescence unit natural log (FULN) at 0.3 mg/ml 
Itraconazole (ITZ) concentration treated 12 h after inoculation (12 h). 

 Treatment1 Day FULN SE2 Letter group3 

B10_0 0 2.0479 0.1215 MNO 

B10_0 1 5.8750 0.1215 ABCD 

B10_0 2 6.5061 0.1215 A 

B10_0 3 5.9227 0.1215 ABCD 

B10_0 4 4.5671 0.1215 FIJ 

B2_0 0 2.7361 0.1215 LM 

B2_0 1 5.6457 0.1215 CDG 

B2_0 2 5.9362 0.1215 ABCD 

B2_0 3 5.4607 0.1215 DEH 

B2_0 4 4.9762 0.1215 EFI 

B6_0 0 2.0919 0.1215 MNO 

B6_0 1 5.9477 0.1215 ABCD 

B6_0 2 6.2554 0.1215 ABC 

B6_0 3 5.7144 0.1215 BCDG 

B6_0 4 4.3109 0.1215 IJ 

P10_0.3 0 2.0919 0.1215 MNO 

P10_0.3 1 0.5264 0.1215 RS 

P10_0.3 2 0.09531 0.1215 RS 

P10_0.3 3 0.3109 0.1215 RS 

P10_0.3 4 -2.3026 0.1215 T 

P2_0.3 0 -0.7040 0.2753 S 

P2_0.3 1 0.09531 0.2753 RS 

P2_0.3 2 0.3109 0.2753 RS 

 Treatment1 Day FULN SE2 Letter group3 

P2_0.3 3 0.4407 0.2753 QRS 

P2_0.3 4 1.0499 0.2753 NOPQR 

P6_0.3 0 2.2083 0.2753 LMNO 

P6_0.3 1 0.8718 0.2753 OPQRS 

P6_0.3 2 0.7419 0.2753 PQRS 

P6_0.3 3 1.0016 0.2753 NOPQR 

P6_0.3 4 0.3109 0.2753 RS 

T0.3 0 2.1695 0.2753 MNOP 

T0.3 1 4.2607 0.2753 FHIJK 

T0.3 2 3.5273 0.2753 JKL 

T0.3 3 3.5551 0.2753 JKL 

T0.3 4 2.9488 0.2753 KLM 

W0.3 0 2.1695 0.1215 MN 

W0.3 1 4.8395 0.1215 EFI 

W0.3 2 6.2264 0.1215 ABC 

W0.3 3 6.4100 0.1215 AB 

W0.3 4 5.8597 0.1215 ABCD 

control 0 1.9601 0.2753 LMNOPQ 

control 1 5.8063 0.2753 ABCDEF 

control 2 6.5530 0.2753 ABCD 

control 3 5.8997 0.2753 ABCDE 

control 4 4.5735 0.2753 EFGIJ 

1Treatment: B10_0, B6_0, B2_0= blank nanoparticles at 1060nm, 630nm, 230 nm; P_10, P_6, P_2= polylactic-co-
glycolic acid nanoparticles with Itraconazole at 1060nm, 630nm, 230nm.; T = Itraconazole emulsion in Triton X-

100; W = Itraconazole in water; control = A.flavus alone. 
2SEM: standard error of the mean. 
3Letter group: means with different letters are significantly different (P < 0.05). Least square means were compared 
among treatments over time when a significant treatment by time interaction (P < 0.0001) was observed using Tukey 
post-hoc multiple comparison adjustment.   
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